Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Áp dụng dãy tỉ số bằng nhau ta có
\(\dfrac{x}{5}\)=\(\dfrac{y}{2}\)=\(\dfrac{3x}{15}\)=\(\dfrac{2x}{4}\)=\(\dfrac{3x-2x}{15-4}\)=\(\dfrac{44}{11}\)=4
Suy ra
\(\dfrac{x}{5}\)=4=>x=4x5=20
\(\dfrac{y}{2}\)=4=>y=4x2=8
vậy x=20;y=8
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
1)\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}=\frac{2x+3y}{8+9}=\frac{34}{17}=2\)
\(\Rightarrow x=4.2=8;y=2.3=6\)
2)\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2+5}=\frac{7}{7}=1\)
\(\Rightarrow x=2;y=-5\)
a) Ta có :
\(\frac{x}{4}=\frac{y}{3}\)
\(=\frac{2x}{8}=\frac{3y}{9}\)
Theo tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{2x}{8}=\frac{3y}{9}=\frac{2x+3y}{8+9}=\frac{34}{17}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{2x}{8}=2\\\frac{3x}{9}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=2.8\div2\\y=2.9\div3\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=6\end{cases}}}\)
Vậy ....
b) Theo tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-7}{2-\left(-5\right)}=\frac{7}{7}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{-5}=1\end{cases}\Rightarrow\hept{\begin{cases}x=1.2\\y=1.\left(-5\right)\Rightarrow\end{cases}}\hept{\begin{cases}x=2\\y=-5\end{cases}}}\)
Vậy ...
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
\(2x=3y\)=> \(\frac{x}{3}=\frac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{10}{5}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{2}=2\end{cases}}\)=> \(\hept{\begin{cases}x=6\\y=4\end{cases}}\)
\(3x=4y\)=> \(\frac{x}{4}=\frac{y}{3}\)=> \(\frac{2x}{8}=\frac{3y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{3y}{9}=\frac{2x+3y}{8+9}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{4}=2\\\frac{y}{3}=2\end{cases}}\)=> \(\hept{\begin{cases}x=8\\y=6\end{cases}}\)
\(x:2=y:(-5)\)=> \(\frac{x}{2}=\frac{y}{-5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left[-5\right]}=\frac{7}{7}=1\)
=> \(\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{-5}=1\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=-5\end{cases}}\)