Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4-2x+2
= (x2)2-2x2+1+2x2-2x+1
=(x2-1)2+2(x2-x+1)
=(x2-1)2+2(x2-2.1/2x+1/4+1/4)
=(x2-1)2+2[(x-1/2)2+1/4]
vì (x2-1)2 lớn hơn hoặc = 0 với mọi x và 2[(x-1/2)2+1/4] lớn hơn hoặc = 0 với mọi x
nên (x2-1)2+2[(x-1/2)2+1/4] dương hay x4-2x+2 dương
ta có \(A=2x^2-2xy+\frac{y^2}{2}+\frac{y^2}{2}-4y+8+7\)
\(=\frac{1}{2}\left[\left(4x^2-4xy+y^2\right)+\left(y^2-8y+18\right)\right]+7\)
\(=\frac{1}{2}\left[\left(2x-y\right)^2+\left(y-4\right)^2\right]+7\ge7\)
Vậy ta có A luôn dương
\(A=4x^2+10y^2-4xy-32y+4x+27\)
\(=\left(4x^2-4xy+y^2\right)+4x-2y+1+9y^2-30y+25+1\)
\(=\left(2x-y\right)^2+2\left(2x-y\right)+1+\left(3y\right)^2-2.3y.5+5^2+1\)
\(=\left(2x-y+1\right)^2+\left(3y-5\right)^2+1>0\forall x;y\)
Pham Van Hung
A=4x^2+10y^2-4xy-32y+4x+27A=4x2+10y2−4xy−32y+4x+27
=\left(4x^2-4xy+y^2\right)+4x-2y+1+9y^2-30y+25+1=(4x2−4xy+y2)+4x−2y+1+9y2−30y+25+1
=\left(2x-y\right)^2+2\left(2x-y\right)+1+\left(3y\right)^2-2.3y.5+5^2+1=(2x−y)2+2(2x−y)+1+(3y)2−2.3y.5+52+1
=\left(2x-y+1\right)^2+\left(3y-5\right)^2+1>0\forall x;y=(2x−y+1)2+(3y−5)2+1>0∀x;y
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
Ta có :
\(B=x^2-10x+28\)
\(\Rightarrow B=x^2-2.x.5+25+3\)
\(\Rightarrow B=\left(x+5\right)^2+3\)
Vì \(\left(x+5\right)\ge0\) ( với mọi x )
\(\Rightarrow\left(x+5\right)+3\ge3\)
=> đpcm
\(2x^2+2x+7=2x^2+2x+\frac{1}{2}+\frac{13}{2}\)
\(=2\left(x^2+x+\frac{1}{4}\right)+\frac{13}{2}=2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
\(\Rightarrow2x^2+2x+7\ge\frac{13}{2}\forall x\)
hay biểu thức \(2x^2+2x+7\)luôn dương với mọi x ( đpcm )
2x2 + 2x + 7
= 2( x2 + x + 1/4 ) + 13/2
= 2( x + 1/2 )2 + 13/2 ≥ 13/2 > 0 ∀ x ( đpcm )
Ta có ;
\(2x^2-10x+27\)
\(=x^2-2x+1+x^2-8x+16+10\)
\(=\left(x-1\right)^2+\left(x-4\right)^2+10\)
Vì \(\left(x-1\right)^2\ge0\forall x\)và \(\left(x-4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+\left(x-4\right)^2+10\ge10\forall x\)
=> Biểu thức đã cho luôn dương .
( P.s : Bạn có thể tách theo kiểu khác ).
\(2x^2-10x+27\)
\(=x^2+x^2-4x-6x+4+9+14\)
\(=\left(x^2-4x+4\right)+\left(x^2-6x+9\right)+14\)
\(=\left(x-2\right)^2+\left(x-3\right)^2+14\)
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(x-3\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+\left(x-3\right)^2+14\ge14\forall x\)
=> Biểu thức luôn dương vớ mọi x .