K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

mih cũng cần đáp án bt nữa đấy hiha

15 tháng 4 2020

\(\frac{2}{x+1}-\frac{3x+1}{x+1}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)ĐKXĐ \(x\ne-1;2\)

\(\frac{2-3x-1}{x+1}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)

\(-3x+1=\frac{1}{x-2}\)

\(-3x^2+6x+x-2=1\)

\(-3x^2+7x-2=1\)

\(-3x^2+7x-2-1=0\)

=> vô nghiệm

24 tháng 8 2018

\(\left(1-2x\right)^2=\left(3x-2\right)^2\)

\(=\left(1-2x\right)^2-\left(3x-2\right)^2=0\)

\(\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\)

\(\left(3-5x\right)\left(x-1\right)=0\)

\(\Rightarrow3-5x=0\) \(x-1=0\)

\(\Rightarrow x=\frac{3}{5}\)  or \(x=1\)

b)\(\left(x-2\right)^3+\left(5-2x\right)^3\)

=\(\left(x-2+5-2x\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right)\)

\(\left(3-x\right)\left(x^2-4x+4-5x+2x^2+10-4x+25-20x+4x^2\right)\)

(\(\left(3-x\right)\left(7x^2-33x+39\right)\)

..............

22 tháng 8 2018

(3x + 1)2 - (3x - 1)2

= (3x + 1 + 3x - 1)(3x + 1 - 3x + 1)

= 6x.2

= 12x

22 tháng 8 2018

các bạn giúp mih nốt mấy bài kia với mih đang cần gấp

AH
Akai Haruma
Giáo viên
23 tháng 10 2018

a)

\(2x+3=(2x+3)^2\)

\(\Leftrightarrow (2x+3)^2-(2x+3)=0\)

\(\Leftrightarrow (2x+3)(2x+3-1)=0\)

\(\Leftrightarrow (2x+3)(2x+2)=0\Rightarrow \left[\begin{matrix} 2x+3=0\\ 2x+2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=-1\end{matrix}\right.\)

b) \((x-5)^2=5-x\)

\(\Leftrightarrow (x-5)^2+(x-5)=0\)

\(\Leftrightarrow (x-5)(x-5+1)=0\)

\(\Leftrightarrow (x-5)(x-4)=0\)

\(\Rightarrow \left[\begin{matrix} x-5=0\\ x-4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=4\end{matrix}\right.\)

c) \((x+2)^3=x+2\)

\(\Leftrightarrow (x+2)^3-(x+2)=0\)

\(\Leftrightarrow (x+2)[(x+2)^2-1]=0\)

\(\Leftrightarrow (x+2)(x+2-1)(x+2+1)=0\)

\(\Leftrightarrow (x+2)(x+1)(x+3)=0\)

\(\Rightarrow \left[\begin{matrix} x+2=0\\ x+1=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=-1\\ x=-3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2018

d)

\(|3x-1|=(1-3x)^2\)

\(\Leftrightarrow |3x-1|=|3x-1|^2\)

\(\Leftrightarrow |3x-1|^2-|3x-1|=0\)

\(\Leftrightarrow |3x-1|(|3x-1|-1)=0\)

\(\Rightarrow \left[\begin{matrix} |3x-1|=0\\ |3x-1|-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} |3x-1|=0\\ |3x-1|=1\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} 3x-1=0\\ 3x-1=\pm 1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{3}\\ x=\frac{2}{3}\\ x=0\end{matrix}\right.\)

e)

\(2x+(x+3)(3-x)+(x+1)(x-1)=7\)

\(\Leftrightarrow 2x+(3^2-x^2)+(x^2-1^2)=7\)

\(\Leftrightarrow 2x=-1\Rightarrow x=-\frac{1}{2}\)

5 tháng 8 2019

Ta có: A = x2 - 5x + 1 = (x2 - 5x + 25/4) - 21/4 = (x - 5/2)2 - 21/4

Ta luôn có: (x - 5/2)2 \(\ge\)\(\forall\)x

=> (x - 5/2)2 - 21/4 \(\ge\)-21/4 \(\forall\)x

Dấu "=" xảy ra <=> x -5/2 = 0 <=> x = 5/2

Vậy Min A = -21/4 tại  x = 5/2

Ta có: B = -x + 3x + 1 = -(x - 3x  + 9/4) + 13/4 = -(x - 3/2)2 + 13/4

Ta luôn có: -(x - 3/2)2 \(\le\)\(\forall\)x

=> -(x - 3/2)2 + 13/4 \(\le\)13/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x  = 3/2

Vậy Max B = 13/4 tại x = 3/2

(xem lại đề)

25 tháng 10 2019

phân tích đa thức sau thành nhân tử:

a) x2+2x-y2+1

=x\(^2\)+2x+1-y\(^2\)

=(x+1)\(^2\)-y\(^2\)

=(x+1-y)(x+1+y)

b) x2+3x-y2+3y

=x\(^2\)-y\(^2\)+3x+3y

=(x-y)(x+y)+3(x+y)

=(x+y)(x-y+3)

c) 3(x+3)-x2+9

=3(x+3)-(x\(^2\)-3\(^2\))

=3(x+3)-(x-3)(x+3)

=(x+3)[3-(x-3)]

=(x+3)(3-x+3)

25 tháng 10 2019

a) x2+2x-y2+1

=x22+2x+1-y22

=(x+1)22-y22

=(x+1-y)(x+1+y)

b) x2+3x-y2+3y

=x22-y22+3x+3y

=(x-y)(x+y)+3(x+y)

=(x+y)(x-y+3)

c) 3(x+3)-x2+9

=3(x+3)-(x22-322)

=3(x+3)-(x-3)(x+3)

=(x+3)[3-(x-3)]

=(x+3)(3-x+3)

=(x+3)(6-x)

13 tháng 8 2019

a)\(x^2+3x+2\)

\(=x^2+x+2x+2\)

\(=x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+2\right)\left(x+1\right)\)

13 tháng 8 2019

k)\(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x+1^2\)

\(=\left(2x+1\right)^2\)

2 tháng 9 2015

a,  (3x2+1)2+2xy+y2+1=0

    (3x2+1)2+(y+1)2=0  Vì (3x2+1)2 >=0 ; (y+1)>=0 với mọi x,ý

=>3x2+1=0 => 3x2=1  =>  x2=1/3  => x=căn 1/3

   y+1=0 =>    y=-1

b,  x2+2xy+4y2+4y+y2+1=0

    (x2+2xy+y2) + (4y2+4y+1)=0

  (x+y)2 + (2y+1)2=0  Vì (x+y)2 >=0 ; (2y+1)2 >=0 vói mọi x,y

=> 2y+1=0  => y=-1/2

x+y=0  => x-1/2=0  => x=1/2