Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
a ) \(27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3\left(3x\right)^2+3.3x+1\)
\(=\left(3x+1\right)^3\)
Thay \(x=13\) vào b/t trên ta được :
\(\left(3.13+1\right)^3=40^3=64000\)
Vậy g/t b/t trên là : \(64000\) tại \(x=13\)
b ) \(x^3-15x^2+75x-125\)
\(=x^3-3x^2.5+3x.5^2-5^3\)
\(=\left(x-5\right)^3\)
Thay \(x=35\) vào b/t trên ta được :
\(\left(35-5\right)^3=30^3=27000\)
Vậy g/t b/t trên là : \(27000\Leftrightarrow x=35\)
c ) \(x^3+12x^2+48x+65\)
\(=x^3+3x^2.4+3x.4^2+4^3+1\)
\(=\left(x+4\right)^3+1\)
Thay \(x=6\) vào b/t trên , ta được :
\(\left(6+4\right)^3+1=10^3+1=1000+1=1001\)
Vậy g/t b/t trên là : \(1001\) tại \(x=6\)
a) \(27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3.\left(3x\right)^2+3.3x+1^3\)
\(=\left(3x+1\right)^3\)
Thay x = 13, ta được:
\(=\left(3.13+1\right)^3\)
\(=40^3\)
\(=64000\)
b) \(x^3-15x^2+75x-125\)
\(=x^3-3.x^2.5+3.x.5^2-5^3\)
\(=\left(x-5\right)^3\)
Thay x = 35, ta được:
\(=\left(35-5\right)^3\)
\(=30^3\)
\(=27000\)
c) \(x^3+12x^2+48x+65\)
\(=x^3+5x^2+7x^2+35x+13x+65\)
\(=x^2\left(x+5\right)+7x\left(x+5\right)+13\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2+7x+13\right)\)
Thay x = 6, ta được:
\(=\left(6+5\right)\left(6^2+7.6+13\right)\)
\(=1001\)
a) \(x^3+15x^2+75x=-125\)
\(\Leftrightarrow x^3+15x^2+75x+125=0\)
\(\Leftrightarrow x^3+125+15x^2+75x=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2+5x+25\right)+15x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2+20x+25\right)=0\)
\(TH1:x+5=0\Leftrightarrow x=-5\)
\(TH2:x^2+20x+25=0\)
\(\Leftrightarrow\left(x+10\right)^2=75\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{75}-10\\x=-\sqrt{75}-10\end{cases}}\)
a) Ta có: \(x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)
\(=\left(x+4\right)^3\)
b) Ta có: \(x^3-12x^2+48x-64\)
\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)
\(=\left(x-4\right)^3\)
c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
d)Sửa đề: \(x^3-3x^2+3x-1\)
Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
e) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)
\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)
\(=\left(\frac{1}{3}-3y\right)^3\)
\(A=x^3+12x^2+48x+64=\left(x+4\right)^3\)
\(B=x^3-6x^2+12x-8=\left(x-2\right)^3\)
\(D=\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-\left(z\right)^2\)
\(E=\left(2x-1\right)\left(4x^2+2x+1\right)=8x^3-1\)
\(C=\left(2x+y^2\right)^3=\left(2x\right)^2+3\left(2x\right)^2y^2+3.2x\left(y^2\right)^3+\left(y^2\right)^3\)
3)(9a)2-(5a-3b)2
= (9a-5a+3b)(9a+5a-3b)
= (4a+3b)(14a-3b)
Ta có :
\(64-48x+12x^2-x^3\)
\(=4^3-3.4^2x+3.4x^2-x^3\)
\(=\left(4-x\right)^3\)
\(2x-x^2=2\\ \Leftrightarrow x^2-2x+2=0\\ \Leftrightarrow\left(x^2-2x+1\right)+1=0\\ \Leftrightarrow\left(x-1\right)^2+1=0\\ Mà:\left(x-1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x-1\right)^2+1\ge1\forall x\in R\\ Vậy:Pt.vô.nghiệm\\ x^3+15x^2+75x+125=0\\ x^3+3.x^2.5+3.x.5^2+5^3=0\\ \left(x+5\right)^3=0\\ \Leftrightarrow x+5=0\\ \Leftrightarrow x=-5\\ x^3+48x=12x^2+64\\ \Leftrightarrow x^3-12x^2+48x-64=0\\ \Leftrightarrow x^3-3.x^2.4+3.x.4^2-4^2=0\\ \Leftrightarrow\left(x-4\right)^3=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)