Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2)\) Ta có :
\(n^{200}< 3^{400}\)
\(\Leftrightarrow\)\(n^{200}< 3^{2.200}\)
\(\Leftrightarrow\)\(n^{200}< \left(3^2\right)^{200}\)
\(\Leftrightarrow\)\(n^{200}< 9^{200}\)
Mà \(n\) lớn nhất nên \(n=8\)
Vậy \(n=8\)
Chúc bạn học tốt ~
\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2020}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall xy.\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0\) \(\forall xy.\)
Mà \(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0.\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)
\(\Rightarrow\left(2x-5\right)+\left(3y+4\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
Vì (2x+3 )^2018>= 0 ; (3y-5)^2020 >=0
=>(2x + 3)2018+ (3y-5)2020 >= 0
mà (2x + 3)2018+ (3y-5)2020 (< hoặc =) 0
=> (2x + 3)2018+ (3y-5)2020 = 0
=> (2x+3 )^2018= 0 ; (3y-5)^2020 =0
=> 2x+3=0 ; 3y-5=0
=> 2x=-3; 3y=5
=> x=-3/2; y=5/3
b)(x - y - 7)2 >=0; (4x - 3y - 24)2 >= 0
=> (x - y - 7)2 + (4x - 3y - 24)2 >= 0
Dấu = xảy ra <=> (x - y - 7)2 =0; (4x - 3y - 24)2 = 0
<=> x-y-7=0 ; 4x-3y-24=0
<=> x-y=7 ; 4x-3y=24
<=> 4x-4y=28; 4x-3y=24
<=> y=-4; x-y=7
<=> y=-4 ; x=3
a) Vì \(\left(2a+1\right)^2\ge0\left(\forall a\right)\)
\(\left(b+3\right)^4\ge0\left(\forall b\right)\)
\(\left(5c-6\right)^2\ge0\left(\forall c\right)\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\ge0\)
Mà ở đây, đề bài bảo: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\le0\)
=> Vô lí
=> Phương trình vô nghiệm
b;c Tương tự
Ta có :
\(\begin{cases}\left(\frac{1}{2x}-5\right)^{20}\ge0\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\end{cases}\)
Mà : \(\left(\frac{1}{2x}-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
\(\Rightarrow\begin{cases}\left(\frac{1}{2x}-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)
(+) \(\frac{1}{2x}-5=0\)
\(\Rightarrow x=\frac{1}{10}\)
(+) \(y^2-\frac{1}{4}=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=\frac{1}{2}\\y=-\frac{1}{2}\end{array}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(\frac{1}{10};\frac{1}{2}\right);\left(\frac{1}{10};-\frac{1}{2}\right)\right\}\)
Do \(\left(\frac{1}{2}x-5\right)^{20}\ge0;\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
=> \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
=> \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}=0\)
=> \(\begin{cases}\left(\frac{1}{2}x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\)=> \(\begin{cases}x=10\\y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\end{cases}\)
a) Ta thấy:
\(\left(x-3\right)^2\ge0\)
\(\left(y+2\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Để \(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+3\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}x-3=0\\y+3=0\end{cases}\)
\(\Rightarrow\begin{cases}x=3\\y=-3\end{cases}\)
Vậy \(\begin{cases}x=3\\y=-3\end{cases}\)
c) Ta thấy:
\(\left(x-12+y\right)^{200}\ge0\)
\(\left(x-4-y\right)^{200}\ge0\)
\(\Rightarrow\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}\ge0\)
Để \(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)
\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)
\(\Rightarrow\begin{cases}x+y=12\\x-y=4\end{cases}\)
\(\Rightarrow\begin{cases}x=\left(12+4\right):2\\y=\left(12-4\right):2\end{cases}\)
\(\Rightarrow\begin{cases}x=8\\y=4\end{cases}\)
Vậy \(\begin{cases}x=8\\y=4\end{cases}\)
a)\(x^2+y^2=0\)mà \(x^2\ge0\)\(;\)\(y^2\ge0\)\(\Rightarrow x^2=0\)\(;\)\(y^2=0\)\(\Rightarrow\)\(x=0\)\(;\)\(y=0\)
b) Mình nghĩ ở câu b không thể xảy ra trường hợp < 0 đâu nha bạn.Bạn thử kiểm tra lại đề xem sao.
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2000}=0\)mà\(\left(2x-5\right)^{2000}\ge0\)\(;\)\(\left(3y+4\right)^{2000}\ge0\)\(\Rightarrow\)\(2x-5=0\)\(;\)\(3y+4=0\)\(\Rightarrow\)\(x=\frac{5}{2}\)\(;\)\(y=\frac{-4}{3}\)
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0.^{\left(1\right)}\)
\(\left(2x-5\right)^{2018}\ge0;\left(3y+4\right)^{2020}\ge0\Rightarrow\left(1\right)\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=0+5=5\\3y=0-4=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}}}}\)
Vậy x = 5/2 và y = -4/3
thank bạn nha