Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
\(\left(2x-5\right)^4=\left(2x-5\right)^6\)
\(\Leftrightarrow\left(2x-5\right)^6-\left(2x-5\right)^4=0\)
\(\Leftrightarrow\left(2x-5\right)^4.\left[\left(2x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-5\right)^4=0\\\left(2x-5\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\2x-5=\pm1\end{cases}}\)
giải nốt
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
a, \(\frac{\left(5-2x\right)}{3}=\frac{\left(4x-1\right)}{-5}\)
\(\Leftrightarrow-5(5-2x)=3\left(4x-1\right)\)
\(\Leftrightarrow10x-25=12x-3\)
\(\Leftrightarrow10x-12x=25-3\)
\(\Leftrightarrow-2x=22\)
\(\Leftrightarrow x=-11\)
b, \(\frac{\left(12-3x\right)}{32}=\frac{6}{\left(4-x\right)}\)
\(\Leftrightarrow\frac{3\left(4-x\right)}{32}=\frac{6}{\left(4-x\right)}\)
\(\Leftrightarrow3(4-x)\left(4-x\right)=32.6\)
\(\Leftrightarrow(4-x)\left(4-x\right)=32.2\)
\(\Leftrightarrow(4-x)^2=64\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=8\\4-x=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=12\end{cases}}\)
c, \(\frac{\left(10-2x\right)}{6}=\frac{27}{\left(5-x\right)}\)
\(\Leftrightarrow\frac{2\left(5-x\right)}{6}=\frac{27}{\left(5-x\right)}\)
\(\Leftrightarrow2(5-x)\left(5-x\right)=27.6\)
\(\Leftrightarrow(5-x)\left(5-x\right)=27.3\)
\(\Leftrightarrow(5-x)^2=81\)
\(\Leftrightarrow\orbr{\begin{cases}5-x=9\\5-x=-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=14\end{cases}}\)
a, \(\frac{5-2x}{3}=\frac{4x-1}{-5}\Leftrightarrow-25+10x=12x-3\Leftrightarrow-22-2x=0\Leftrightarrow x=-11\)
b, \(\frac{12-3x}{32}=\frac{6}{4-x}\Leftrightarrow\frac{12-3x}{32}=\frac{18}{12-3x}\)
\(\Leftrightarrow\left(12-3x\right)^2=576\Leftrightarrow12-3x=\pm2\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=\frac{14}{3}\end{cases}}\)
c, \(\frac{10-2x}{6}=\frac{27}{5-x}\Leftrightarrow\frac{10-2x}{6}=\frac{54}{10-2x}\)
\(\Leftrightarrow\left(10-2x\right)^2=324\Leftrightarrow10-2x=\pm18\)\(\Leftrightarrow\orbr{\begin{cases}x=14\\x=-4\end{cases}}\)
a) \(A\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)
\(A\left(x\right)=(x^7-x^7)+(-2x^6+2x^6)+2x^3+(-2x^4+2x^4)+(x^5-x^5)-x+5\)
\(A\left(x\right)=2x^3-x+5\)
- Bậc của đa thức A(x) là 3
- Hệ số tự do: 5
- Hệ số cao nhất: 2
b) \(B\left(x\right)=-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)
\(B\left(x\right)=(-3x^5-x^5)+(4x^4-2x^4-2x^4)+(-2x+x+3x)+\left(\dfrac{1}{2}+\dfrac{5}{2}\right)\)
\(B\left(x\right)=-4x^5+2x+3\)
- Bậc của đa thức B(x) là 5
- Hệ số tự do: 3
- Hệ số cao nhất: \(-4\)
c) \(C\left(y\right)=5y^2-2.\left(y+1\right)+3y.\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y^3-6y+5\)
\(C\left(y\right)=5y^2-2y+3+3y^3-6y\)
\(C\left(y\right)=5y^2-8y+3+3y^3\)
\(C\left(y\right)=3y^3+5y^2-8y+3\)
- Bậc của đa thức C(y) là 3
- Hệ số tự do: 3
- Hệ số cao nhất: 3
1: Trường hợp 1: x<-2
Pt sẽ là -x-2+5-x=7
=>-2x+3=7
=>-2x=4
hay x=-2(loại)
Trường hợp 2: -2<=x<5
Pt sẽlà x+2+5-x=7
=>7=7(luôn đúng)
Trường hợp 3: x>=5
Pt sẽ là x+2+x-5=7
=>2x-3=7
=>x=5(nhận)
4: \(\left|x^2-2x\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(x^2-2x\right)^2=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-2x-x\right)\left(x^2-2x+x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-3x\right)\left(x^2-x\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;1;3\right\}\)
5: Ta có: \(\left|2x+3\right|=x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(2x+3+x+2\right)\left(2x+3-x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(3x+5\right)\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};-1\right\}\)
6: |5x-4|=|x+2|
=>5x-4=x+2 hoặc 5x-4=-x-2
=>4x=6 hoặc 6x=2
=>x=3/2 hoặc x=1/3
\(2x+\frac{1}{2}=\frac{-5}{3}\)
\(2x=\frac{-5}{3}-\frac{1}{2}\)
\(2x=\frac{-10}{6}-\frac{3}{6}\)
\(2x=\frac{-13}{6}\)
\(x=\frac{-13}{6}:2\)
\(x=\frac{-13}{12}\)
Diện tích hình tròn \(=r.r.3,14\)
Ta có 2 bán kính \(\times\) với nhau rồi \(\times\) với \(3,14\)
Diện tích hình tròn sẽ tăng:
\(5\times5=25\) ( lần )
ĐS....
\(\left(2x-5\right)^4=\left(2x-5\right)^6\)
\(\Leftrightarrow\left(2x-5\right)^6-\left(2x-5\right)^4=0\)
\(\Leftrightarrow\left(2x-5\right)^4\left[\left(2x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\\left(2x-5\right)^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\\left(2x-5\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\2x-5=1\\2x-5=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\2x=6\\2x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\\x=2\end{matrix}\right.\)