Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
\(B=-x^2-10y^2+6xy-2x+10y-3\)
\(=-x^2-9y^2-1+6xy-2x+6y-y^2+4y-4+2\)
\(=-\left(x-3y+1\right)^2-\left(y-2\right)^2+2\le2\)
Dấu \(=\)khi \(\hept{\begin{cases}x-3y+1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\).
1.A,Ta có:
\(\frac{x+5}{x+3}< 1\)
\(\Leftrightarrow1+\frac{2}{x+3}< 1\)
\(\Leftrightarrow\frac{2}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
\(\Leftrightarrow x< -3\)
B,\(\frac{x+3}{x+4}>1\)
\(\Leftrightarrow\frac{x+4-1}{x+4}>1\)
\(\Leftrightarrow1+\frac{-1}{x+4}>1\)
\(\Leftrightarrow\frac{-1}{x+4}>0\)
\(\Leftrightarrow x+4< 0\)
\(\Leftrightarrow x< -4\)
2.A,Ta có:
\(\left(2x-1\right)^2\ge0,\forall x\)
\(\Leftrightarrow-3\left(2x-1\right)^2\le0\)
\(\Leftrightarrow5-3\left(2x-1\right)^2\le5\)
Vậy \(Max_A=5\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Câu B hình như tìm GTNN thì phải
xin lỗi, bn cóa thể bấm ∑ cái nài để lm lại đề đc hăm :v?
\(2x-\dfrac{3}{4}-x+\dfrac{1}{3}>\dfrac{1}{2}-3-\dfrac{x}{5}\)