K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)

\(=x^3+14x^2+27x+51\)

b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)

\(=8x^3+18-8x^3+18=36\)

c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)

\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)

\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)

\(=64x^5-1\)

d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)

\(=x^3-x^2+14\)

Chúc bạn học tốt!!!

13 tháng 7 2017

Cảm ơn nha !!!

31 tháng 7 2023

p) \(\left(9-x\right)\left(x^2+2x-3\right)\)

\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)

\(=9x^2+18x-27-x^3-2x^2+3x\)

\(=-x^3+7x^2+21x-27\)

n) \(\left(-x+3\right)\left(x^2+x+1\right)\)

\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=-x^3-x^2-x+3x^2+3x+3\)

\(=-x^2+2x^2+2x+3\)

o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)

\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)

\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)

\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)

q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)

\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)

\(=6x^3-12x^2-18x+x^2-2x-3\)

\(=6x^3-11x^2-20x-3\)

r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)

\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)

\(=-2x^3-6x^2+2x-x^2-3x+1\)

\(=-2x^3-7x^2-x+1\)

u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)

\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)

\(=-2x^3+2x^2+12x+3x^2-3x-18\)

\(=-2x^3+5x^2+9x-18\)

s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)

\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)

\(=-4x^3-12x^2+8x+5x^2+15x-10\)

\(=-4x^3-7x^2+23x-10\)

v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)

\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)

\(=-x^2-3+2x^4+6x+18-12x^3\)

\(=2x^4-12x^3-x^2+6x+15\)

p: (-x+9)(x^2+2x-3)

=-x^3-2x^2+3x+9x^2+18x-27

=-x^3+7x^2+21x-27

n: (-x+3)(x^2+x+1)

=-x^3-x^2-x+3x^2+3x+3

=-x^3+2x^2+2x+3

o: (-6x+1/2)(x^2-4x+2)

=-6x^3+24x^2-12x+1/2x^2-2x+1

=-64x^3+49/2x^2-14x+1

q: (6x+1)(x^2-2x-3)

=6x^3-12x^2-18x+x^2-2x-3

=6x^3-11x^2-20x-3

r: (2x+1)(-x^2-3x+1)

=-2x^3-6x^2+2x-x^2-3x+1

=-2x^3-7x^2-x+1

u: =-2x^3+2x^2+12x+3x^2-3x-18

=-2x^3+5x^2+9x-18

s: =-4x^3-12x^2+8x+5x^2+15x-10

=-4x^3-7x^2+23x-10

3 tháng 9 2019

x=\(-\frac{43}{5}\)

3 tháng 9 2019

Ta có: \(\left(x+3\right)^2-\left(x-2\right)\left(x+3\right)+\left(2x+1\right)^3=6x\left(2x+1\right)+\left(2x-3\right)\left(4x^2+6x+9\right)\)\(\Leftrightarrow\left(x+3\right)\left(x+3-x+2\right)+\left(2x\right)^3+12x^2+6x+1=12x^2+6x+8x^3-27\)

\(\Leftrightarrow5\left(x+3\right)+8x^3+12x^2+6x+1=8x^3+12x^2+6x-27\)

\(\Leftrightarrow5x+15+8x^3+12x^2+6x+1=8x^3+12x^2+6x-27\)

\(\Leftrightarrow8x^3+12x^2+11x+16=8x^3+12x^2+6x-27\)

\(\Leftrightarrow5x+43=0\)

\(\Leftrightarrow5x=-43\)\(\Leftrightarrow x=\frac{-43}{5}\)

Vậy \(x=-\frac{43}{5}\)

29 tháng 8 2020

Bài giải

\(4x\left(2x^2-1\right)+27=\left(4x^2+6x+9\right)\left(2x+3\right)\)

\(8x^3-4x+27=8x^3+12x^2+18x+12x^2+18x+27\)

\(8x^3-4x+27=8x^3+24x^2+36x+27\)

\(8x^3-4x+27-8x^3-36x-27=24x^2\)

\(-40x=24x^2\)

\(\frac{3}{5}x^2=x\)

\(\frac{3}{5}x^2-x=0\)

\(x\left(\frac{3}{5}x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\\frac{3}{5}x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\frac{3}{5}x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)

\(\Rightarrow\text{ }x\in\left\{0\text{ ; }\frac{5}{3}\right\}\)

21 tháng 9 2021

\(\Rightarrow8x^3+27=8x^3+12x^2+6x+1-12x^2-3x\\ \Rightarrow3x=26\Rightarrow x=\dfrac{26}{3}\)

3 tháng 3 2020

\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(2x+3\right)\left(4x^2-6x+9\right)=19x\left(x^2-1\right)\)

\(\Leftrightarrow27x^3-8-8x^3-27=19x^3-19x\)

\(\Leftrightarrow19x^3-35=19x^3-19x\)

\(\Leftrightarrow35=19x\)

\(\Leftrightarrow x=\frac{35}{19}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{35}{19}\right\}\)

Ta có: \(4x\left(2x^2-1\right)+27=\left(4x^2+6x+9\right)\left(2x+3\right)\)

\(\Leftrightarrow8x^3-4x+27=8x^3+12x^2+12x^2+18x+18x+27\)

\(\Leftrightarrow8x^3-4x+27-8x^3-24x^2-36x-27=0\)

\(\Leftrightarrow-24x^2-40x=0\)

\(\Leftrightarrow-8x\left(3x+5\right)=0\)

mà -8≠0

nên \(\left[{}\begin{matrix}x=0\\3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-5}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{-5}{3}\right\}\)