Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có
(2*-1)^2008>=0 với mọi x
(y-2/5)>=0 với mọi y
|x+y-z|>=0 với mọi x; y; z
=>(3 cái trên) >=0 với mọi x y z
Với (đề bài)
<=>2x-1 mũ 2008=0
y-2/5=0
x+y-z=0
=>x=1/2;y=2/5;z=x+y=1/2+2/5=9/10
R kết luận
>= là lớn hơn hoặc bg
vì ( 2x -1)2008>= 0 ( y-2/5)2008 >= 0 ( vì 2008 chẵn)
/ x +y-z/ >=0
=> (2x-1)2008+(y-2/5)2008 +/x+y-z/ >= 0
dấu = xảy ra <=> đồng thời (2x-1)=0, (y-2/5) = 0 , /x+y-z/=0
<=> x=1/2 , y= 2/5 và z = -9/10
- Có (2x-1)^2008 lớn hơn hoặc bằng 0 với mọi x
(y-2/5)^2008 lớn hơn hoặc bằng 0 với mọi y
|x+y+z| lớn hơn hoặc bằng 0 với mọi x;y;z
=> (2x-1)^2008 + (y-2/5)^2008 + |x+y+z| lớn hơn hoặc bằng 0 với mọi x
Mà (2x-1)^2008 + (y-2/5)^2008 + |x+y+z| = 0
=> Dấu = xảy ra <=> 2x-1=0 => 2x=1 => x = 0.5
y-2/5=0 => y=2/5
x+y+z=0 => x+y=-z => z= -9/10
Vậy x=0.5; y=2/5; z= -9/10
(2x - 1 )2008+(y - 2/5)2008 + |x + y - z | = 0
=> ( 2x - 1) 2008 =0 => 2x - 1 =0 => 2x = 1 => x = 1/2
( y - 2/5 )2008 = 0 y - 2/5 = 0 y =2/5 y = 2/5
|x + y -z | = 0 x + y - z = 0 x + 2/5 - z = 0 1/2 - 2/5 -z = 0
=>x = 1/2 =>x = 1/2
y = 2/5 y = 2/5
5/10 - 4/10 = z z = 1/ 10
Vậy x = 1/2 ; y = 2/5 : z = 1/10
( nhớ cho mk nha )
ta có: \(\left(2x-1\right)^{2008}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)
\(\left|x+y-z\right|\ge0\)
\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)
để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
\(\Rightarrow\left(2x-1\right)^{2008}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
\(\left(y-\frac{2}{5}\right)^{2008}=0\Rightarrow y-\frac{2}{5}=0\Rightarrow\frac{2}{5}\)
\(\left|x+y-z\right|=0\Rightarrow x+y-z=0\Rightarrow z=x+y\Rightarrow z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)
KL: x= 1/2; y= 2/5; z=9/10
( mk nghĩ nó còn có nhiều đáp số lắm, nhưng mk ko bít cách lm)
ta có: \(\left(\text{2x − 1}\right)^{2018}\) ≥ 0
\(\left(y-\frac{2}{5}\right)^{2018}\) ≥ 0
\(\left|x+y-z\right|\) ≥ 0
⇒ \(\left(\text{2x − 1 }\right)^{2018}\)+ \(\left(y-\frac{2}{5}\right)^{2018}\) +\(\left|\text{ x + y − z }\right|\) ≥ 0
để \(\left(\text{2x − 1}\right)^{2018}\) + \(\left(y-\frac{2}{5}\right)^{2018}\) + \(\left|\text{x + y − z}\right|\) = 0
⇒ \(\left(\text{2x − 1}\right)^{2018}\) = 0 ⇒ 2x − 1 = 0 ⇒ x = \(\frac{1}{2}\)
\(\left(y-\frac{2}{5}\right)^{2018}\) = 0 ⇒ y − \(\frac{2}{5}\) = 0⇒ \(\frac{2}{5}\)
\(\left|\text{x + y − z}\right|\) = 0 ⇒ x + y − z = 0 ⇒ z = x + y ⇒z = \(\frac{1}{2}\) + \(\frac{2}{5}\) = \(\frac{9}{10}\)
KL: x = \(\frac{1}{2}\); y = \(\frac{2}{5}\); z = \(\frac{9}{10}\)
( mình nghĩ nó còn có nhiều đáp số lắm, nhưng mình ko biết cách làm)
Chúc bạn học có hiệu quả!
Vì mọi hạng tử trong đa thức đều lớn hơn hoặc bằng 0 nên ta xét 3 trường hợp:
(+) \(\left(2x-10\right)^{2008}=0\) \(\Rightarrow\) \(2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
(+) \(\left(y-\frac{2}{5}\right)^{2008}\) \(\Rightarrow y-\frac{2}{5}=0\)
\(\Rightarrow y=\frac{2}{5}\)
(+) \(\left|x+y+z\right|=0\) \(\Rightarrow x+y+z=0\)
\(\Rightarrow\) \(\frac{1}{2}+\frac{2}{5}+z=0\)
\(\Rightarrow\) \(\frac{7}{5}+z=0\)
\(\Rightarrow z=-\frac{7}{5}\)
Vì\(\hept{\begin{cases}\left(2x-1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y-z\right|\ge0\end{cases}}\)
=>\(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\hept{\begin{cases}2x=1\\y=\frac{2}{5}\\x+y-z=0\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\end{cases}}\)
KL: (x,y,z)=(\(\frac{1}{2};\frac{2}{5};\frac{9}{10}\))