K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

\(3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(-2x+6\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

30 tháng 5 2017

xin lỗi toán lớp 8 thì mk chịu

28 tháng 8 2020

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

28 tháng 8 2020

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt

\(\Leftrightarrow\left|x^2-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=3\\x^2-1=-3\end{matrix}\right.\Leftrightarrow x\in\left\{2;-2\right\}\)

28 tháng 2 2022

\(\left|x^2-1\right|=\left|-3\right|\\ \Leftrightarrow\left[{}\begin{matrix}x^2-1=3\\x^2-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=-2\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=\pm2\)

31 tháng 10 2019

\(A=\left(x+y\right)^2+\left(y-x\right)^2-2\left(x-y\right)\left(x+y\right)\)

\(=\left(x+y\right)^2+\left(y-x\right)^2+2\left(y-x\right)\left(x+y\right)\)

\(=\left(x+y+y-x\right)^2\)

\(=\left(2y\right)^2\)Thay \(y=\frac{1}{2}\)ta được:
\(\left(2.\frac{1}{2}\right)^2\)

\(=1\)

Vậy \(A=1\)tại \(x=2019\)và \(y=\frac{1}{2}\)

1 tháng 11 2019

A = (x + y)^2 + (y - x)^2 - 2(x - y)(x + y)

A = x^2 + 2xy + y^2 + x^2 - 2xy + y^2 - 2x^2 + 2y^2

A = (x^2 + x^2 - 2x^2) + (2xy - 2xy) + (y^2 + y^2 + 2y^2)

A = 4y^2 (1)

Thay x = 2019 và y = 1/2 vào (1), ta có:

(4.1/2)^2 = 4

a: Ta có: \(\left(x-3\right)^2-x\left(x+5\right)=9\)

\(\Leftrightarrow x^2-6x+9-x^2-5x=9\)

\(\Leftrightarrow x=0\)

b: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

8 tháng 4 2020

A/ \(2\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=3\end{matrix}\right.\)

KL:...........

B/ \(\left(x-1\right)^2\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)

KL:..................

C/ \(\left(\frac{2x}{3}+4\right)\left(2x-3\right)\left(\frac{x}{2}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\frac{2x}{3}+4=0\\2x-3=0\\\frac{x}{2}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\frac{3}{2}\\x=2\end{matrix}\right.\)

KL:.....................

8 tháng 4 2020

tui nhìn nhầm đề bài:))

5 tháng 6 2017

Đặt biểu thức đã cho là A.

Ta có: 2A = (3 - 1) * (3 + 1) * (3^2 + 1) * .... * (3^64 + 1)

= (3^2 - 1) * (3^2 + 1) * ... * (3^64 + 1) (hằng đẳng thức a^2 - b^ 2 = (a+b)(a-b))

Rút gọn triệt tiêu ta được 2A=3^64 - 1

=> A = (3^64 - 1)/2

13 tháng 7 2017

 a^2x^2 +(a^2+b^2-c^2)x + b^2 > 0 
Δ = (a^2+b^2-c^2)^2 - 4a^2b^2 = (a^2+b^2-c^2 + 2ab)(a^2+b^2-c^2 - 2ab) 
= [(a+b)^2 - c^2][a-b)^2 - c^2] = (a+b+c)(a+b-c)(a-b+c)(a-b -c) 
(a + b + c) > 0 
(a + b - c) > 0 
(a - b + c) > 0 
(a - b - c) < 0 
(tính chất các cạnh tam giác) 
=> Δ < 0 
=> a^2x^2 +(a^2+b^2-c^2)x + b^2 cùng dấu với a^2 > 0 
=> a^2x^2 +(a^2+b^2-c^2)x + b^2 > 0

mình cũng chẳng biết đúng ko nhưng mình nghĩ chắc ai đề

4 tháng 8 2017

Do \(x\left(x+1\right)⋮2\Rightarrow\left(y^2+1\right)⋮2\Rightarrow\) y2 là số lẻ hay y là số lẻ.

Ta đặt \(y=2k+1\left(k\in Z\right)\), khi đó \(x\left(x+1\right)=\left(2k+1\right)^2+1\)

\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\left(2k+1\right)^2=\frac{5}{4}\)

\(\Leftrightarrow4\left(x+\frac{1}{2}\right)^2-4\left(2k+1\right)^2=5\Leftrightarrow\left[\left(2x+1-4k-2\right)\right]\left[\left(2x+1+4k+2\right)\right]=5\)

\(\Leftrightarrow\left(2x-4k-1\right)\left(2x+4k+3\right)=5\)

Tới đây ta tìm được các cặp (x, k), từ đó suy ra các cặp (x,y)