Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)+) ta có 11 có tận cùng là 1 nên 112011 cũng có tận cùng là 1
+) 187\(\equiv\)2(mod10)=> 1821\(\equiv\)8(mod10)
=> 18231\(\equiv\)233\(\equiv\)2(mod10)
183003\(\equiv\)213\(\equiv\)2) mod10
=> 183024\(\equiv\)8.2\(\equiv\)6(mod10)
vậy chữ só tận cùng là 6
Nhiều câu quá >.<
a/ \(2x\left(x+5\right)=\left(x+3\right)^2+\left(x-1\right)^2+20.\)
\(2x^2+10x=x^2+6x+9+x^2-2x+1+20.\)
\(10x=4x+30\)
\(6x=30\Rightarrow x=5\)
các câu còn lại tương tự
\(a,2x\left(x+5\right)=\left(x+3\right)^2+\left(x-1\right)^2+20\)
\(\Leftrightarrow2x^2+10x=x^2+6x+9+x^2-2x+1+20\)
\(\Leftrightarrow2x^2+10x=2x^2+4x+30\)
\(\Leftrightarrow2x^2+10x-2x^2-4x=30\)
\(\Leftrightarrow6x=30\)
\(\Leftrightarrow x=5\)
Vậy ...........
\(b,\left(2x-2\right)^2=\left(x+1\right)^2+3\left(x-2\right)\left(x+5\right)\)
\(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3x^2+15x-6x-30\)
\(\Leftrightarrow4x^2-8x+4=4x^2+11x-29\)
\(\Leftrightarrow4x^2-8x-4x^2-11x=-29-4\)
\(\Leftrightarrow-19x=-33\)
\(\Leftrightarrow x=\frac{33}{19}\)
Vậy...........
\(c,\left(x-1\right)^2+\left(x+3\right)^2=2\left(x-2\right)\left(x+1\right)+38\)
\(\Leftrightarrow x^2-2x+1+x^2+6x+9=2x^2+2x-4x-4+38\)
\(\Leftrightarrow2x^2+4x+10=2x^2-2x+34\)
\(\Leftrightarrow2x^2+4x-2x^2+2x=34-10\)
\(\Leftrightarrow6x=24\)
\(\Leftrightarrow x=4\)
Vậy.............
\(d,\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-18\)
\(\Leftrightarrow x^3+6x+12x+8-\left(x^3-6x+12x-8\right)=12x^2-12x-8\)
\(\Leftrightarrow x^3+6x+12x+8-x^3+6x-12x+8=12x^2-12x-8\)
\(\Leftrightarrow12x=-24\)
\(\Leftrightarrow x=-2\)
Vậy............
a) \(2^{x-1}+2^{x+1}+2^{x+2}=104\)
=> \(2^{x-1}+2^x\cdot2+2^x\cdot2^2=104\)
=> \(2^x:2+2^x\cdot\left(2+2^2\right)=104\)
=> \(2^x\cdot\frac{1}{2}+2^x\cdot6=104\)
=> \(2^x\cdot\left(\frac{1}{2}+6\right)=104\Rightarrow2^x=104:\left(\frac{1}{2}+6\right)=104:\frac{13}{2}=16\)
=> \(x=4\)
b) \(3.2^{x+1}=12\)
\(2^{x+1}=12:3\)
\(2^{x+1}=4\)
\(2^{x+1}=2^2\)
\(x+1=2\)
\(x=2-1\)
\(x=1\)
Vậy \(x=1\)
c) \(2^{x-1}=2^3+2^4-2^3\)
\(2^{x-1}=8+16-8\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
Vậy \(x=5\)
d) \(x^{50}=x\)
\(x^{50}-x=0\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
\(b.3.2^{x+1}=12\\ \Rightarrow2^{x+1}=4\\ \Rightarrow2^{x+1}=2^2\\ \Rightarrow x=1\\ \)
c) \(2^{x-1}=2^3-2^3+2^4\\ \Rightarrow2^{x-1}=0+16\\ \Rightarrow2^{x-1}=16\\ \Rightarrow2^{x-1}=2^4\\ \Rightarrow x-1=4\\ \Rightarrow x=5\)
d) \(x^{50}=x\\ \Rightarrow x=0;1\)
e) \(2\left(2x-1\right)^4=32\\ \Rightarrow\left(2x-1\right)^4=16\\ \Rightarrow\left(2x-1\right)^4=2^4\\ \Rightarrow2x-1=2\\ \Rightarrow2x=3\\ \Rightarrow x=\frac{3}{2}\)
g) Bí
a, \(\left(2x+7\right)^4=10^{11}:10^7\)
\(\Rightarrow\left(2x+7\right)^4=10^4\)
\(\Rightarrow2x+7=10\)
\(\Rightarrow2x=10-7\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\) hay \(x=1,5\)
b, \(5^{x-1}.7^{x-1}=25.49\)
\(\Rightarrow\)\(5^{x-1}.7^{x-1}=5^2.7^2\)
\(\Rightarrow\left\{{}\begin{matrix}5^{x-1}=5^2\\7^{x-1}=7^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=2\\x-1=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=3\end{matrix}\right.\)
c, \(\left(x-5\right)^{2018}=9.\left(x-5\right)^{2016}\)
\(\Rightarrow\dfrac{\left(x-5\right)^{2018}}{\left(x-5\right)^{2016}}=9.\dfrac{\left(x-5\right)^{2016}}{\left(x-5\right)^{2016}}\)
\(\Rightarrow\left(x-5\right)^2=9\)
\(\Leftrightarrow\left(x-5\right)^2=3^2\)
\(\Rightarrow x-5=3\)
\(\Rightarrow x=3+5\)
\(\Rightarrow x=8\)
2x+1=1025
2x = 1025 - 1
2x = 1024
=>2x = 210 =>x = 10
2x + 1 = 1025
2x = 1025 - 1
2x = 1024
x = \(\sqrt{1024}\)
x = 32