Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(3^4.3^n:9=3^7\)
\(\Rightarrow3^4.3^n=3^7.9\)
\(\Leftrightarrow3^4.3^n=3^7.3^2\)
\(\Rightarrow3^4.3^n=3^9\)
\(\Rightarrow3^n=3^9:3^4\)
\(\Rightarrow3^n=3^5\)
\(\Rightarrow n=5\)
Vậy \(n=5\)
d)
\(2^n:4=16\)
\(\Leftrightarrow2^n:2^2=2^4\)
\(\Rightarrow2^n=2^4.2^2\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
Vậy \(n=6\)
6.2^n + 3.2^n = 9.2^n
=> 6.2^n + 3.2^n - 9.2^n = 0
2^n.(6+3-9) = 0
2^n.0=0
=> n thuộc Z
b) 3^n : 3^2 = 243
3^n = 27 = 3^3
=> n = 3
c) 2^n - 64 = 2^6
2^n = 2^12
=> n = 12
d) 2^n - 16 = 128
2^n = 144
...
bn tự tìm xem có 2 mũ bao nhiu = 144 ko nha!!!
Tìm x\(\in\)n
a,x3-23=25-(316:314+28:216)
b,5x-2-32=24-(68:66-62)
c,(x2-1)4=81
d,3x+42=196:(193.192)-3.1
a) \(15+2^n=31\)
\(2^n=16\Rightarrow n=4\)
b) \(2.2^n+4.2^n=6.2^5\)
\(2^n\left(2+4\right)=6.2^5\)
\(2^n.6=6.2^5\Rightarrow n=5\)
c) \(32^n:16^n=1024\)
\(\left(2^5\right)^n:\left(2^4\right)^n=2^{10}\)
\(2^{5n}:2^{4n}=2^{10}\)
\(2^n=2^{10}\Rightarrow n=10\)
d) \(5^n+5^{n+2}=650\)
\(5^n+5^n.25=650\)
\(5^n\left(1+25\right)=650\)
\(5^n.26=650\)
\(5^n=25\Rightarrow n=2\)
e) \(3^n+5.3^{n+1}=432\)
\(3^n+5.3^n.3=432\)
\(3^n\left(1+15\right)=432\)
\(3^n.16=432\)
\(3^n=27\Rightarrow n=3\)
x3 - 23 = 25 - ( 316: 314 + 28 : 26 )
x3 - 23 = 25 - ( 316-14 + 28-6)
x3 - 23 = 25 - ( 32 + 22 )
x3 - 23 = 25 - ( 9 + 4 )
x3 - 23 = 25 - 13
x3 - 23 = 32 - 13
x3 - 23 = 19
x3 - 8 = 19
x3 = 19 + 8
x3 = 27
x3 = 33
suy ra x = 3
Bạn tick cho mink với nhé!! Lần sau bạn đăng nữa thì mink giải cho!!**
x3 - 23 = 25 - ( 316-14 + 28-6 )
x3 - 8 = 32 - ( 32 + 22 )
x3 - 8 = 32 - ( 9 + 4 )
x3 - 8 = 32 - 13
x3 - 8 = 19
x3=19+8
x3=27
x3=33
=>x=3
a) 27^16 : 9^10
Ta có: (3.9)^16 : 9^10
= 3^16.9^16: 9^10
= 3^16. 9^6
= 3^16.(3^2)^6
=3^16.3^12
=3^28
Bài 1 :
a) Ta có : 3210 = (25)10 = 250
1615 = (24)15 = 260
250 < 260 => 3210 < 1615
b) Ta có : 2711 = (33)11 = 333
818 = (34)8 = 332
333 > 332 => 2711 > 818
c) Ta có : 536 = (53)12 = 12512
1124 = (112)12 = 12112
12512 > 12112 => 536 > 1124
d) Ta có : 216 = 213 . 2 . 2 . 2 = 213 . 8
7. 213 < 213 . 8 => 7 . 213 < 216
Bài 3 :
Ta có :
S = 1 + 2 + 22 + 23 + ... + 22018
S = (1 + 2) + (22 + 23 + 24) + ... + (22016 + 22017 + 22018)
S = 3 + 28 + ... + 22015(2 + 22 + 23)
S = 3 + 28 + ... + 22015. 14
Vậy số dư khi chia S cho 7 là 3
2. tìm số tự nhiên x , biết
A. 3x - 14 = 25 : 23
3x - 14 = 25-3
3x-14 = 22
3x - 14 = 4
3x = 4 + 14
3x = 18
x = 18: 3
x = 6
B. 150 - 2 . ( x + 2 ) = 4 . 22
150 - 2 ( x + 2 ) = 22 . 22
150 - 2 (x + 2) = 22+2
150 - 2 (x+2 ) = 24
150-2 (x+2 ) = 16
2 ( x+2 ) = 150 - 16
2 (x+2) = 134
x+2 = 134 : 2
x +2 =67
x = 65
4. so sánh 5 200 và 2 500
\(2^{500}=\left(2^5\right)^{100}=23^{100}\)
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
Vì \(23< 25\) nên:
\(\Rightarrow23^{100}< 25^{100}\)
Vậy : \(5^{200}>2^{500}\)
\(2^n.16-2^{n+1}=2^6-2^3\\ \Leftrightarrow2^n.2^4-2^n.2=2^6-2^3\\ \Leftrightarrow2^n\left(2^4-2\right)=2^6-2^3\\ \Leftrightarrow2^n=\dfrac{2^6-2^3}{2^4-2}\\ \Leftrightarrow2^n=\dfrac{2\left(2^5-2^2\right)}{2\left(2^3-1\right)}\\ \Leftrightarrow2^n=\dfrac{28}{6}\\ \Leftrightarrow2^n=4\\ \Leftrightarrow2^n=2^2\\ \Leftrightarrow n=2\)
\(2^n.16-2^{n+1}=2^6-2^3\\ \Leftrightarrow2^n.2^4-2^{n+1}=64-8\\ \Leftrightarrow2^{n+4}-2^{n+1}=56\\ \Leftrightarrow2^{n+1}.\left(2^3-1\right)=56\\ \Leftrightarrow2^{n+1}.7=56\\ \Leftrightarrow2^{n+1}=\dfrac{56}{7}=8=2^3\\ \Leftrightarrow n+1=3\\ \Leftrightarrow n=2\)