Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng đồng dư đi :v
2^2^2n=16^n
có 16 đồng dư 2 mod 7
=>16^n đồng dư 2 mod 7
=>16^n+5 đồng dư 0 mod 7
- Với n = 1, ta có: 14 - 12 = 0 chia hết cho 12
Vậy đẳng thức đúng với n = 1.
- Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:
\(k^4-k^2\) chia hết cho 12
- Ta cần chứng minh mệnh đề đúng với n = k + 1.
Ta có:
(k + 1)4 - (k + 1)2
\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)
\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12
Vậy đẳng thức đúng với n = k + 1.
Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.
P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^
Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)
Mặt khác, ta có:
\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)
Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)
Vậy điều giả sử là sai.
Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.
Áp dụng bất đẳng thức Cauchy ta có:
\(m^2+n^2+p^2+q^2+1\)
\(=\left(\frac{1}{4}m^2+n^2\right)+\left(\frac{1}{4}m^2+p^2\right)+\left(\frac{1}{4}m^2+q^2\right)+\left(\frac{1}{4}m^2+1\right)\)
\(\ge2\sqrt{\frac{1}{4}m^2\cdot n^2}+2\sqrt{\frac{1}{4}m^2\cdot p^2}+2\sqrt{\frac{1}{4}m^2\cdot q^2}+2\sqrt{\frac{1}{4}m^2\cdot1}\)
\(=2\cdot\frac{1}{2}mn+2\cdot\frac{1}{2}mp+2\cdot\frac{1}{2}mq+2\cdot\frac{1}{2}m\)
\(=mn+mp+mq+m\)
\(=m\left(n+p+q+1\right)\)
Dấu "=" xảy ra khi: \(\frac{1}{4}m^2=n^2=p^2=q^2=1\)\(\Rightarrow\hept{\begin{cases}m=2\\n=p=q=1\end{cases}}\)
Với n = 1 => 2^n = n^2
=> bđt trên sai