K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

Giải: Đặt: (2n^2 + 3n + 1 ; 3n + 2 ) = d

=> \(\hept{\begin{cases}2n^2+3n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n^2+3n+1\right)⋮d\\2n\left(3n+2\right)⋮d\end{cases}}\)

=> 3 ( 2n^2 + 3n + 1 ) - 2n ( 3n + 2 ) \(⋮\)d

=> 5n + 3 \(⋮\)

=> ( 5n + 3 ) - ( 3n + 2 ) \(⋮\)d

=> 2n + 1 \(⋮\)

=> (3n + 2 ) - (2n + 1) \(⋮\)d

=> n + 1 \(⋮\)d

=> ( 2n + 1 ) - ( n + 1) \(⋮\)d

=> n \(⋮\)

=> ( n +1 ) - n \(⋮\)d

=> 1 \(⋮\)d  => d = 1

=> ( 2n^2 + 3n + 1 ; 3n + 2 ) =1

=> ( 2n^2 + 3n + 1) / ( 3n + 2 ) là phân số tối giản với mọi số tự nhiên n. 

28 tháng 3 2018

Gọi d là ƯCLN của 2n + 1 và 3 n + 2

Ta có

2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )

Từ (1), (2)

=> 6n+4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=>  ƯCLN ( 2n + 1 : 3n + 2 ) = 1

=>  Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z 

28 tháng 3 2018

Phương pháp chứng minh 1 p/s tối giản là :

Chứng minh ƯCLN của tử và mẫu = 1

Còn cách làm : Tự làm

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

28 tháng 2 2017

a) Gọi \(d\)là ước chung của \(n+3;n+4\)

\(\Rightarrow n+3⋮d\)và \(n+4⋮d\)

\(\Rightarrow n+3-\left(n+4\right)⋮d\)

\(\Rightarrow n+3-n-4⋮d\)

\(\Rightarrow-1⋮d\Rightarrow d=-1;1\)

Tử và mẫu chỉ có ước chung là -1;1 nên phân số \(\frac{n+3}{n+4}\)là phân số tối giản (đpcm)

DD
27 tháng 2 2021

a) Đặt \(d=\left(n+1,2n+3\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)

Suy ra \(d=1\)

Do đó ta có đpcm. 

b) Bạn làm tương tự ý a). 

c) Đặt \(d=\left(3n+2,5n+3\right)\).

Ta có: \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)=1⋮d\).

Suy ra \(d=1\)

27 tháng 2 2021
N=2 2n=2.10
21 tháng 2 2017

Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có

3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d

=> d = -1 hoặc 1, do đó n - 5 và 3n - 14  là nguyên tố cùng nhau

vậy n - 5/3n - 14 là phân số tối giản

21 tháng 2 2017

123456789q

1 tháng 2 2019

Gọi d là USC của 2n-1 và 3n-2

=> 2n-1 chia hết cho d => 6n-3 chia hết cho d

=> 3n-2 chai hết cho d => 6n-4 chia hết cho d

Nên 6n-3-6n+4=1 chia hết cho d => d=1 => 2n-1 và 3n-2 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{2n-1}{3n-2}\) là phân số tối giản

6 tháng 5 2021

Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))

=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)