Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(=x^2-2xy+y^2-x^2+2xy=y^2\)
b: \(=x^2-2xy+y^2+x^2+2xy-x^2-2xy-y^2\)
\(=x^2-2xy\)
Bài 3:
a: \(\Leftrightarrow x^2-4-7=x^2-2x+1\)
=>-2x+1=-11
=>-2x=-12
hay x=6
b: =>(x-3)(x-3-x-3)=0
=>x-3=0
hay x=3
a) \(16x^2+8xy+y^2=\left(4x+y\right)^2\)
b) \(4x^2-2xy+\dfrac{1}{4}y^2=\left(2x-\dfrac{1}{2}y\right)^2\)
c) \(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
d) \(9x^2-6xy+y^2=\left(3x-y\right)^2\)
\(A=-4x^2-5y^2+8xy+10y+12\)
\(-A=4x^2+5y^2-8xy-10y-12\)
\(-A=\left(4x^2-8xy+y^2\right)+\left(4y^2-10y+\frac{25}{4}\right)-\frac{73}{4}\)
\(-A=\left(2x-y\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{73}{4}\)
Mà : \(\left(2x-y\right)^2\ge0\forall x;y\)
\(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)
\(\Rightarrow-A\ge-\frac{73}{4}\)
\(\Leftrightarrow A\le\frac{73}{4}\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}2x-y=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{5}{4}\end{cases}}\)
Vậy \(A_{Max}=\frac{73}{4}\Leftrightarrow\left(x;y\right)=\left(\frac{5}{8};\frac{5}{4}\right)\)
a) Dễ dàng nhận thấy đây là hằng đẳng thức (1) với
A = x ;
2.AB = 6xy ⇒ B = 3y.
Vậy ta có hằng đẳng thức:
x2 + 2.x.3y + (3y)2 = (x + 3y)2
hay x2 + 6xy + 9y2 = (x + 3y)2
b) Nhận thấy đây là hằng đẳng thức (2) với :
B2 = 25y2 = (5y)2 ⇒ B = 5y
2.AB = 10xy = 2.x.5y ⇒ A = x.
Vậy ta có hằng đẳng thức : x2 – 10xy + 25y2 = (x – 5y)2
c) Đề bài tương tự:
4x2 + 4xy + ... = (... + y2)
... – 8xy + y2 = ( ...– ...)2
Bài 1:
$A=(9x^2-5x)+(5y^2+3y)$
$=[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]+5(y^2+\frac{3}{5}y+\frac{3^2}{10^2})-\frac{103}{90}$
$=(3x-\frac{5}{6})^2+5(y+\frac{3}{10})^2-\frac{103}{90}$
$\geq \frac{-103}{90}$
Vậy $A_{\min}=\frac{-103}{90}$. Giá trị này đạt tại $3x-\frac{5}{6}=y+\frac{3}{10}=0$
$\Leftrightarrow (x,y)=(\frac{5}{18}, \frac{-3}{10})$
Bài 2:
a.
$-A=4x^2+5y^2-8xy-10y-12$
$=(4x^2-8xy+4y^2)+(y^2-10y+25)-37$
$=(2x-2y)^2+(y-5)^2-37\geq -37$
$\Rightarrow A\leq 37$
Vậy $A_{\max}=37$. Giá trị này đạt tại $2x-2y=y-5=0$
$\Leftrightarrow x=y=5$
b.
$-B=3x^2+16y^2+8xy+5x-2$
$=(x^2+16y^2+8xy)+2(x^2+\frac{5}{2}x+\frac{5^2}{4^2})-\frac{41}{8}$
$=(x+4y)^2+2(x+\frac{5}{4})^2-\frac{41}{8}$
$\geq \frac{-41}{8}$
$\Rightarrow B\leq \frac{41}{8}$
Vậy $B_{\max}=\frac{41}{8}$. Giá trị này đạt tại $x+4y=x+\frac{5}{4}=0$
$\Leftrightarrow x=\frac{-5}{4}; y=\frac{5}{16}$
5x2 + 5y2 + 8xy + 2y - 2x + 2 = 0
=> (4x2 + 4y2 + 8xy) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0
=> 4(x + y)2 + (x - 1)2 + (y + 1)2 = 0
Mà 4(x + y)2 , (x - 1)2 , (y + 1)2 lớn hơn hoặc bằng 0.
=> 4(x + y)2 = (x - 1)2 = (y + 1)2 = 0
=> x + y = x - 1 = y + 1 = 0. => x - 2 = -1
M = ( x +y ) 2013 + ( x - 2 ) 2014 + ( y + 1 )2015 = 02013 + (-1)2014 + 02015 = 1
\(\left(x-1\right)^2+\left(y+1\right)^2+2\left(x+y\right)^2=0\)
Suy ra \(x=1,y=-1\). Tới đây bạn tự giải tiếp nha.
a) \(x^2-6x+9=x^2-2\cdot x\cdot3+3^2=\left(x-3\right)^2\)
b) \(4x^2-12xy+9y^2=\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2=\left(2x-3y\right)^2\)
c) \(4x^2-2x+1=\left(2x-1\right)^2\)
d) \(x^2+8xy+16y^2=\left(x+4y\right)^2\)