K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

\(A=x^2+2xy+y^2-6-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5=2^2-6\cdot2-5=-13\)

\(B=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)

\(=3x^2+3y^2-\left(x+y\right)\left(x^2+xy+y^2\right)+1\)

\(=3x^2+3y^2-2\left(x^2+xy+y^2\right)+1\)

\(=3x^2+3y^2-2x^2+2xy-2y^2+1=x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1=2^2+1=5\)

30 tháng 9 2016

\(\left(x+y\right)=3\Leftrightarrow\left(x+y\right)^2=9\Leftrightarrow x^2+y^2+2xy=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2.\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=3.\left(5-2\right)=9\)

Câu 6:

\(\left(x-2016\right)^2\ge0\) với mọi x

\(\left(x+2017\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-2016\right)^2+\left(y+2017\right)^2=0\) Khi \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\)\(\left(x+2017\right)^2=0\Leftrightarrow x=-2017\)

\(\Rightarrow x+y=2016-2017=-1\)

Câu 7:

 \(D=\left(x+y\right)^2-6\left(x+y\right)-15=\left(-9\right)^2-6.\left(-9\right)-15=120\)

\(Q=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=-2\)

30 tháng 9 2016

câu 5:

x2+y2=5   -> x2+2xy+ y2-2xy=5

                -> (x+y)- 2xy = 5 -> 32  - 2xy = 5 ->xy = 2

có x3+ y3= (x+y).(x2-xy+y2)

              = 3.( 5- 2)= 9

vậy x3+ y=9

câu 6:

( x - 2016)2  ≥ 0 dấu = xảy ra khi x=2016

 ( y + 2017 )2  ≥ 0 dấu bằng xảy ra khi y = 2016

-> ( x - 2016)+ ( y + 2017 )2  ≥ 0 dấu bằng xảy ra khi x=2016, y = 2017

-> x+y=2016+2017=4033

câu 7:

a,

D = x2 +2xy +y - 6x - 6y  -15= (x2 +2xy +y2)  - (6x + 6y)  -15= (x+y)2 - 6(x+y) - 15

D= (-9)2 -6.(-9)-15=120

b,

Q = x2 + 2xy + y - 4x - 4y +1 = (x2 + 2xy + y2)  - (4x + 4y) +1

Q= (x+y)2-4.(x+y)+1

Q=32- 4.3 +1= -2

14 tháng 7 2017

a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)

\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=10^2-2.\left(-3\right)^2=82\)

b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)

 \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=1.\left(1-2xy-xy\right)+3xy=1\)

Các câu còn lại tương tự

19 tháng 10 2016

a) 2x-5y+4y+2x

=4x+y

Tai x=3 y=-12 thi

4x3+(-12)=12-12=0

b)3x+4y-2x-3y

 

 

19 tháng 10 2016

b)3x+4y-2x-3y

=x+y

Tai x-2; y=-5 thi

2+(-5)=2-5=-3

 

11 tháng 6 2016

Viết lại : 

a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)

b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)

11 tháng 6 2016

a) M=(x+y)3+2x2+4xy+2y2

     M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539

b)N=(x-y)3-x2+2xy-y2

    N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1

13 tháng 8 2018

\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)

Vậy GTNN của A là -22 khi x = 5

\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = -3

\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)

\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

Vậy GTNN của D là 16 khi x = 2; y = 0

\(E=x^2+2y^2-2xy+4x-6y+100\)

\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)

\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)

Vậy GTNN của E là 95 khi x = -1 ; y = 1

\(F=2x^2+y^2-2xy+4x+100\)

\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)

\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)

Vậy GTNN của F là 96 khi x = -2; y = -2

13 tháng 8 2018

\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

Vậy GTLN của A là 39 khi x = -6

\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)

Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)

18 tháng 7 2015

dễ