Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)=3\Leftrightarrow\left(x+y\right)^2=9\Leftrightarrow x^2+y^2+2xy=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2.\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=3.\left(5-2\right)=9\)
Câu 6:
\(\left(x-2016\right)^2\ge0\) với mọi x
\(\left(x+2017\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-2016\right)^2+\left(y+2017\right)^2=0\) Khi \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\) và \(\left(x+2017\right)^2=0\Leftrightarrow x=-2017\)
\(\Rightarrow x+y=2016-2017=-1\)
Câu 7:
\(D=\left(x+y\right)^2-6\left(x+y\right)-15=\left(-9\right)^2-6.\left(-9\right)-15=120\)
\(Q=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=-2\)
câu 5:
x2+y2=5 -> x2+2xy+ y2-2xy=5
-> (x+y)2 - 2xy = 5 -> 32 - 2xy = 5 ->xy = 2
có x3+ y3= (x+y).(x2-xy+y2)
= 3.( 5- 2)= 9
vậy x3+ y3 =9
câu 6:
( x - 2016)2 ≥ 0 dấu = xảy ra khi x=2016
( y + 2017 )2 ≥ 0 dấu bằng xảy ra khi y = 2016
-> ( x - 2016)2 + ( y + 2017 )2 ≥ 0 dấu bằng xảy ra khi x=2016, y = 2017
-> x+y=2016+2017=4033
câu 7:
a,
D = x2 +2xy +y2 - 6x - 6y -15= (x2 +2xy +y2) - (6x + 6y) -15= (x+y)2 - 6(x+y) - 15
D= (-9)2 -6.(-9)-15=120
b,
Q = x2 + 2xy + y2 - 4x - 4y +1 = (x2 + 2xy + y2) - (4x + 4y) +1
Q= (x+y)2-4.(x+y)+1
Q=32- 4.3 +1= -2
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
a) 2x-5y+4y+2x
=4x+y
Tai x=3 y=-12 thi
4x3+(-12)=12-12=0
b)3x+4y-2x-3y
Viết lại :
a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)
b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)
a) M=(x+y)3+2x2+4xy+2y2
M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539
b)N=(x-y)3-x2+2xy-y2
N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)
Vậy GTNN của A là -22 khi x = 5
\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)
Vậy GTNN của B là -14 khi x = -3
\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)
\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)
Vậy GTNN của D là 16 khi x = 2; y = 0
\(E=x^2+2y^2-2xy+4x-6y+100\)
\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)
\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)
Vậy GTNN của E là 95 khi x = -1 ; y = 1
\(F=2x^2+y^2-2xy+4x+100\)
\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)
\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)
Vậy GTNN của F là 96 khi x = -2; y = -2
\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)
Vậy GTLN của A là 39 khi x = -6
\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)
Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)
\(A=x^2+2xy+y^2-6-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5=2^2-6\cdot2-5=-13\)
\(B=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
\(=3x^2+3y^2-\left(x+y\right)\left(x^2+xy+y^2\right)+1\)
\(=3x^2+3y^2-2\left(x^2+xy+y^2\right)+1\)
\(=3x^2+3y^2-2x^2+2xy-2y^2+1=x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1=2^2+1=5\)