K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

a. Quy dong rut gon cac thu ta duoc

\(A=-ab\)

b.

Ta co:

\(A=-ab\ge-\frac{\left(a+b\right)^2}{4}=-4\)

Dau '=' xay ra khi a=b=2

8 tháng 2 2020

Ta có :

\(\frac{AB}{CD}=\frac{2}{3}=\frac{8}{12}\)

\(\frac{CD}{EF}=\frac{4}{5}=\frac{12}{15}\)

\(\text{8+12+15=35}\)

\(\Rightarrow CD=\frac{70}{35}.12=24\)

Còn lại bạn làm tương tự nha

22 tháng 4 2017

Giải bài 56 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

15 tháng 1 2020

Cảm ơn chú đã kb giờ thì t sẽ làm hộ chú :V

\(P=\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

\(P=\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}+\frac{\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}-\frac{ab-1}{ab-1}\right]\)

\(:\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab-1}\right)}\right]-\frac{\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}+\frac{ab-1}{ab-1}\)

\(P=\frac{\left(a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1\right)+\left(ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}\right)-\left(ab-1\right)}{ab-1}\)

\(:\frac{\left(a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1\right)-\left(ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}\right)+\left(ab-1\right)}{ab-1}\)

\(P=\frac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{ab-1}\)

\(:\frac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}{ab-1}\)

\(P=\frac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}:\frac{-2\sqrt{a}-2}{ab-1}\)

\(P=\frac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{ab-1}.\frac{ab-1}{-2\left(\sqrt{a}+1\right)}=-\sqrt{ab}\)

P/s: :V bài này tính toán kĩ nhưng chưa chắc đúng :VVVV

Mr.Fuff cảm ơn ạ >_<!!!!

\(\dfrac{AB}{CD}=\dfrac{EF}{GH}\)

=>\(\dfrac{AB}{CD}+1=\dfrac{EF}{GH}+1\)

=>\(\dfrac{AB+CD}{CD}=\dfrac{EF+GH}{GH}\)

AB/CD=EF/GH

nên CD/AB=GH/EF
=>\(\dfrac{CD}{AB}+1=\dfrac{GH}{EF}+1\)

=>\(\dfrac{CD+AB}{AB}=\dfrac{GH+EF}{EF}\)

=>\(\dfrac{AB}{CD+AB}=\dfrac{EF}{EF+GH}\)