Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9+2^{19}.3^9.5}{2^{19}.3^9+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9.\left(1+5\right)}{2^{19}.3^9\left(1+2.3\right)}\)
\(=\frac{6}{7}\)
c: \(=\dfrac{7}{23}\cdot\left(\dfrac{-4}{3}-\dfrac{5}{2}\right)=\dfrac{7}{23}\cdot\dfrac{-8-15}{6}\)
\(=\dfrac{7}{23}\cdot\dfrac{-23}{6}=-\dfrac{7}{6}\)
d: \(=\dfrac{5}{7}\left(23+\dfrac{1}{4}-13-\dfrac{1}{4}\right)=\dfrac{5}{7}\cdot10=\dfrac{50}{7}\)
e: \(=\dfrac{2^5\cdot3^3\cdot5^3}{2^3\cdot3^3\cdot2^2\cdot5^2}=5\)
i: \(=\dfrac{1}{3^{10}}\cdot3^{50}-\dfrac{2^{10}}{3^{10}}:\dfrac{4^5}{3^{10}}\)
\(=3^{40}-1\)
a, \(27< 3^x< 3\cdot81\)
=> \(3^3< 3^x< 3\cdot3^4\)
=> \(3^3< 3^x< 3^5\)
=> x = 4
b, \(4^{15}\cdot9^{15}< 2^x\cdot3^x< 18^{16}\cdot216\)
=> \(\left[2^2\right]^{15}\cdot\left[3^2\right]^{15}< 2^x\cdot3^x< \left[2\cdot3^2\right]^{16}\cdot6^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{16}\cdot3^{32}\cdot2^3\cdot3^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{19}\cdot3^{35}\)
Đến đây tìm được x
\(c,2^{x+1}\cdot3^y=2^{2x}\cdot3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\Leftrightarrow x=1\)
\(d,6^x:2^{2000}=3^y\)
=> \(\frac{6^x}{3^y}=2^{2000}\)
=> \(\frac{3^{2x}}{3^y}=2^{2000}\)
=> \(3^{2x-y}=2^{2000}\)
Đến đây tìm thử x,y
c: \(=\dfrac{7}{23}\cdot\dfrac{-24-45}{18}=\dfrac{7}{23}\cdot\dfrac{-69}{18}=\dfrac{7}{18}\cdot\left(-3\right)=-\dfrac{7}{6}\)
d: \(=\dfrac{7}{5}\left(23+\dfrac{1}{4}-13-\dfrac{1}{4}\right)=\dfrac{7}{5}\cdot10=14\)
e: \(=\dfrac{2^5\cdot3^3\cdot5^3}{2^3\cdot3^3\cdot2^2\cdot5^2}=5\)
i: \(=\dfrac{1}{3^{10}}\cdot3^{50}-\dfrac{2^{10}}{3^{10}}:\dfrac{4^5}{9^5}=3^{40}-1\)