K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2023

\(27x^3+27x^2+9x+1\)

\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)

\(=\left(3x+1\right)^3\)

=(3x)^3+3*(3x)^2*1+3*3x*1^2+1^3

=(3x+1)^3

12 tháng 9 2018

Bài 1:

\(a,27x^3+27x^2+9x+1\)

\(=\left(3x\right)^3+3.\left(3x\right)^2.1+3.3x.1^2+1^3\)

\(=\left(3x+1\right)^3\)

\(b,x^3+3\sqrt{2}x^2y+6xy^2+2\sqrt{2}y^3\)

\(=x^3+3.x^2.\sqrt{2}y+3.x.\left(\sqrt{2}y\right)^2+\left(\sqrt{2}y\right)^3\)

\(=\left(x+\sqrt{2}y\right)^3\)

Bài 2:

\(a,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

\(b,\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3-4x^2+4x+x-1=0\)

\(\Leftrightarrow-x^2+8x=0\)

\(\Leftrightarrow-x\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)

12 tháng 9 2018

1)

a) = (3x+1)3

b) (x+\(\sqrt{2}\) )3

2)

a)\(x^3+9x^2+27x+27=0\\ \left(x+3\right)^3=0\\ =>x=-3\)

b) Bài cuối bạn tự làm nhé! Mình mắc học bài

# Chúc bạn học tốt !

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

1.

$27x^2-1=(\sqrt{27}x)^2-1^2=(\sqrt{27}x-1)(\sqrt{27}x+1)$

2.

a)

$x^3-9x^2+27x-27=-8$

$\Leftrightarrow x^3-3.3x^2+3.3^2.x-3^3=-8$

$\Leftrightarrow (x-3)^3=-8=(-2)^3$

$\Rightarrow x-3=-2$

$\Leftrightarrow x=1$

b)

$64x^3+48x^2+12x+1=27$

$\Leftrightarrow (4x)^3+3.(4x)^2.1+3.4x.1^2+1^3=27$

$\Leftrightarrow (4x+1)^3=3^3$

$\Rightarrow 4x+1=3$

$\Leftrightarrow x=\frac{1}{2}$

15 tháng 10 2018

mày viết lại cái đề bài hộ tao cái

17 tháng 10 2018

lm heets cmnr

3 tháng 8 2019

a, \(m^3+27\)

\(\Leftrightarrow m^3+3^3\)

\(\Leftrightarrow\left(m+3\right)\left(m^2-m.3+3^2\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m^2-3m+9\right)\)

b,\(\frac{1}{27}+a^3\)

\(\Leftrightarrow\frac{1}{27}\left(1+27a^3\right)\)

\(\Leftrightarrow\frac{1}{27}.\left(1+3a\right)\left(1-3a+9a^2\right)\)

c,\(\left(a+b\right)^3-c^3\)

\(\Leftrightarrow\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]\)

\(\Leftrightarrow\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)

d,\(x^9+1\)

\(\Leftrightarrow\left(x^3+1\right)\left(x^6-x^3+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)

e,\(x^3+9x^2+27x+27\)

\(\Leftrightarrow x^3+3.x^2.3+3x.9+3^3\)

\(\Leftrightarrow x^3+3x^2.3+3x+3^2+3^3\)

\(\Leftrightarrow\left(x+3\right)^3\)

28 tháng 7 2019

a) x3 - 9x2 + 27x - 27 = -8

<=> x3 - 3x2.3 + 3x.32 - 33 = -8

<=> (x - 3)3 = -23

<=> x - 3 = -2

<=> x = 1 (T/m)

Vậy x = 1.

28 tháng 7 2019

b) 64x3 + 48x2 + 12x + 1 = 27

<=> (4x)3 + 3.(4x)2.1 + 3.4x.12 + 13 = 27

<=> (4x + 1)3 = 33

<=> 4x + 1 = 3

<=> 4x = 2

<=> x = \(\frac{1}{2}\)(T/m)

Vậy x = \(\frac{1}{2}\).

24 tháng 10 2020

\(x^3+\frac{1}{x^3}=x^3+\left(\frac{1}{x}\right)^3=\left(x+\frac{1}{x}\right)\left(x^2-x+\frac{1}{x^2}\right)\)( x khác 0 )

\(-x^3+9x^2-27x+27=-\left(x^3-9x^2+27x-27\right)=-\left(x-3\right)^3\)

\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

19 tháng 7 2015

a) x3-9x2+27x-27=0

<=>(x-3)3=0

<=>x-3=0

<=>x=3

b) x3-25x=0

<=>x.(x2-25)=0

<=>x.(x-5)(x+5)=0

<=>x=0 hoặc x-5=0 hoặc x+5=0

<=>x=0 hoặc x=5 hoặc x=-5

 

c)9x2-1=0

<=>(3x-1)(3x+1)=0

<=>3x-1=0 hoặc 3x+1=0

<=>x=1/3 hoặc x=-1/3

 

19 tháng 7 2015

a, x^3 - 9x^2 + 27x - 27 = 0 

=> ( x - 3)^3 = 0 

=> x - 3 = 0 

=> x = 3 

b, x^3 - 25x = 0 

=> x(x^2 - 25) = 0 

=> x(x-5)(x + 5) = 0 

=> x =0 hoặc x - 5 = 0 hoặc x + 5 = 0 

=> x= 0 hoặc x =5 hoặc x = -5 

c, 9x^2 -  1 = 0 

 => (3x)^2 - 1^2 = 0 

=> ( 3x- 1)(3x+ 1) = 0 

=> 3x - 1 = 0 hoặc 3x + 1 = 0 

=> x = 1/3 hoặc x = -1/3