Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
\(\left(x+1\right)^3=27\)
\(\left(x+1\right)^3=3^3\)
\(\Rightarrow x+1=3\)
\(x=2\)
\(\left(x+1\right)^3=27\)
\(< =>\left(x+1\right)^3=3.3.3=3^3\)
\(< =>x+1=3< =>x=3-1=2\)
\(\left(2x+3\right)^3=9.81\)
\(< =>\left(2x+3\right)^3=9.9.9\)
\(< =>\left(2x+3\right)^3=9^3\)
\(< =>2x+3=9< =>2x=6\)
\(< =>x=\frac{6}{2}=3\)
1/ a) \(2.3.12.12.3=2.3.2^2.3.2^2.3.3=2^5.3^4\)
b) \(3.5.27.125=3.5.3^3.5^3=3^4.5^4=\left(3.5\right)^4\)
2/ a) \(\left(27^3\right)^4=27^{3.4}=27^{12}\)
Vậy \(\left(27^3\right)^4=27^{12}\)
b) \(5^{36}=\left(5^6\right)^6\) và \(11^{24}=\left(11^4\right)^6\)
Do đó \(5^6=15625\) và \(11^4=14641\)
Vì 15625>14641 nên\(\left(5^6\right)^6>\left(11^4\right)^6hay5^{36}>11^{24}.\)
3/ a) \(x^3=125=>x=5\)
b) \(\left(3x-14\right)^3=2^5.5^2+200\)
\(\left(3x-14\right)^3=1000\)
\(3x-14=10^3\)
\(3x=10^3+14\)
\(3x=1014\)
\(x=\frac{1014}{3}=338\)
c) \(\left(2x-1\right)^4=81\)
\(\left(2x-1\right)^4=3^4\)
\(2x-1=3\)
\(2x=3+1\)
\(x=\frac{4}{2}=2\)
d) \(5x+3^4=2^2.7^2\)
\(5x+3^4=\left(2.7\right)^2=14^2\)
\(5x+81=196\)
\(5x=196-81\)
\(5x=115\)
\(x=\frac{115}{5}=23\)
e) \(4^x=1024=>x=5\).
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
\(7^{13}:49^2=7^{13}:7^4=7^9\)
\(27^{16}:9^{10}=3^{48}:3^{20}=3^{28}\)
\(5^{20}\cdot9^{10}=5^{20}\cdot3^{20}=15^{20}\)
\(7^7\cdot13+7^7\cdot36=7^7\cdot\left(13+36\right)=7^7\cdot49=7^7\cdot7^2=7^9\)
\(5^{12}\cdot37-5^{12}\cdot12=5^{12}\cdot\left(37-12\right)=5^{12}\cdot25=5^{12}\cdot5^2=5^{14}\)
24 . 26 . 2 = 211
35 . 27 . 81 . 36 = 35 . 33 . 34 . 36 = 318
42 . 415 . 64 = 42 . 415 . 43 = 420
29 . 16 . 48 = 29 . 24 . (22)8 = 29 . 24 . 216 = 229
512 : 54 = 58
274 : 34 = (27:3)4 = 94
\(1;4^5.6^5=\left(4.6\right)^5=24^5\)
\(7^2.8^2=\left(7.8\right)^2=56^2\)
\(9^2.2^4=9^2.4^2=\left(9.4\right)^2=36^2\)
\(4^3.7^6=4^3.49^3=\left(49.4\right)^3\)
\(27^4.4^6=\left(27^2\right)^2.64^2=\left(27^2.64\right)^2\)
Bài 1 : Viết tích dưới dạng 1 lũy thừa :
a) 45 . 65 = ( 4 . 6 )5 = 245
b) 72 . 82 = ( 7 . 8 )2 = 562
c) 92 . 24 = ( 32 )2 . 24 = 34 . 24 = ( 3 . 2 )4 = 64
d) 43 . 76 = ( 22 )3 . 76 = 26 . 76 = ( 2 . 7 )6 = 146
e) 274 . 46 = ( 33)4 . ( 22 )6 = 312 . 212 = ( 3 . 2 )12 = 612
a, 273 : 35 = ( 33)3 : 35 = 39 : 35 = 34
b, 72 . 343 . 4930 = 72. 73.(72)3 = 711
c, 625 : 53 = 54 : 53 = 5
d, 1 000 000 : 103 = 106 . 103 = 103
e, 115 : 121= 115 : 112 = 113
f, 87 : 64 :8 = 87 : 82 : 81 = 84
i, 1024 . 16 : 26 = 210 . 23 : 26 = 27
\(27\cdot36+73\cdot99+27\cdot14-49\cdot7\)
\(=27\cdot\left(36+14\right)+73\cdot99-49\cdot7\)
\(=27\cdot50+6884=1350+6884=8234\)
\(\dfrac{5^6}{5^4}+2^3\cdot2^2-1^{2017}\)
\(=5^2+2^5-1\)
=25+32-1
=25+31
=56