Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\left(x\ge1\right)\)
\(< =>5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
\(< =>30\sqrt{x-1}-15\sqrt{x-1}=36+6\sqrt{x-1}\)
\(< =>9\sqrt{x-1}=36\\ < =>\sqrt{x-1}=4\\ < =>x-1=16\\ < =>x=17\left(tm\right)\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{1}{3}\sqrt{x-1}-\sqrt{x-1}=6\)
=>\(1.5\cdot\sqrt{x-1}=6\)
=>\(\sqrt{x-1}=4\)
=>x-1=16
=>x=17
\(\sqrt{25x-25}-\dfrac{15}{2}\cdot\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\) (1)
\(\Leftrightarrow\sqrt{25\left(x-1\right)}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{25}\sqrt{x-1}-\dfrac{5}{2}\cdot\sqrt{x-1}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\cdot\sqrt{x-1}=6+\sqrt{x-1}\)
\(\Leftrightarrow\dfrac{5}{2}\cdot\sqrt{x-1}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}=12+2\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-2\sqrt{x-1}=12\)
\(\Leftrightarrow3\sqrt{x-1}=12\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=16+1\)
\(\Leftrightarrow x=17\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{17\right\}\)
A) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\)
\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=17\)
Vậy, x=17
A: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
=>5/2*căn x-1-căn x-1=6
=>3/2*căn x-1=6
=>căn x-1=4
=>x-1=16
=>x=17
B:
a: ĐKXĐ: x>=0; x<>1
b: Sửa đề: \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
=căn x-1+x-căn x+1
=x
a. \(\Rightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\Rightarrow\sqrt{x+5}\left(2-3+4\right)=6\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)
b.\(\Rightarrow5\sqrt{x-1}-\frac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\Rightarrow\sqrt{x-1}\left(5-\frac{5}{2}-1\right)=6\Rightarrow\sqrt{x-1}=4\Rightarrow x-1=16\Rightarrow x=17\)
6) \(\sqrt{x^2-4x+1}=x\left(x\ge0\right)\)
\(\Leftrightarrow x^2-4x+1=x^2\)
\(\Leftrightarrow x^2-x^2=4x-1\)
\(\Leftrightarrow4x=1\)
\(\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
8) \(\sqrt{x^2-x-6}=\sqrt{x-3}\left(x\ge3\right)\)
\(\Leftrightarrow x^2-x-6=x-3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
9) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\left(x\ge1\right)\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=1+1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b)\(\frac{2}{3}.\sqrt{4x^2-20}+2\sqrt{\frac{x^2-5}{9}}-3\sqrt{x^2-5}=2\)
\(< =>\frac{2}{3}.\sqrt{4\left(x^2-5\right)}+2\cdot\frac{\sqrt{x^2-5}}{3}-3\sqrt{x^2-5}=2\)
\(< =>\frac{2}{3}.2\sqrt{\left(x^2-5\right)}+2\cdot\frac{\sqrt{x^2-5}}{3}-3\sqrt{x^2-5}=2\)
\(< =>\frac{4}{3}\sqrt{\left(x^2-5\right)}+\frac{2}{3}.\sqrt{x^2-5}-3\sqrt{x^2-5}=2\)
\(< =>-\sqrt{\left(x^2-5\right)}=2\)
\(< =>\sqrt{\left(x^2-5\right)}=-2\)(vô nghiệm)
a)\(\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\frac{3}{2}\sqrt{x-1}\)
\(< =>\sqrt{25\left(x-1\right)}-\frac{15}{2}.\frac{\sqrt{x-1}}{3}-\frac{3}{2}\sqrt{x-1}=6\)
\(< =>5\sqrt{x-1}-\frac{5}{2}.\sqrt{x-1}-\frac{3}{2}\sqrt{x-1}=6\)
\(< =>\sqrt{x-1}=6\)
\(< =>x-1=36\)
\(< =>x=37\)
vậy ...
ghi rõ đề vào Batri Htkt ơi