Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(-3\right)^n}{81}=-27\)
=> (-3)n = -27.81
=> (-3)n = -(27.81)
=> (-3)n = -(33.34)
=> (-3)n = -37 = (-3)7
=> n = 7
Vậy n = 7
\(\frac{\left(-3\right)^n}{81}=-27\)
\(\left(-3\right)^n:81=-27\)
\(\left(-3\right)^n=-27\cdot81\)
\(\left(-3\right)^n=-2187\)
\(\left(-3\right)^n=\left(-3\right)^7\)
\(=>n=7\)
2^n/32 = 4 => 2^n = 4 . 32 = 128 => n =7
27^n . 9^n = 9^27 . 81
=> (27.9)^n = 9^27 . 9^2
=> 243^n = 9^54
=> 243^n = 243^1458
vay n=1458
1/9 . 3^4 . 3^n+1 = 9^4
=> 9 . 3^n+1 = 6561
=> 3^n+1 = 6561 /9
=> 3^n+1 = 729
=> n = 5
\(\frac{16}{2^n}=2\Rightarrow2^n=16:2\Rightarrow2^n=8\Rightarrow n=3\)
\(\frac{\left(-3\right)^n}{81}=-27\Rightarrow\left(-3\right)^n=\left(-27\right).81\Rightarrow\left(-3\right)^n=-2187\Rightarrow n=7\)
\(8^n:2^n=4\Rightarrow\left(8:2\right)^n=4\Rightarrow4^n=4\Rightarrow n=1\)
a) => 2n = 16/2 = 8
=> n = 3
b) => (-3)n = -27 x 81 = -2187
=> n = 7
c) 8n : 2n = ( 8 : 2)n = 4n = 4
=> n = 1
Bài 1: 5a+7b chia hết cho 13
=> 35a+49b chia hết cho 13
=> 5(7a+2b)+39b chia hết cho 13
Do 39b chia hết cho 13
=> 5(7a+2b) chia hết cho 13
Mà 5 vs 13 là 2 số nguyên tố cùng nhau
=> 7a+2b chia hết cho 13. (đpcm)
Bài 2:
Xét n=3 thì 1!+2!+3!=9-là SCP (chọn)
Xét n=4 thì 1!+2!+3!+4!=33 ko là SCP (loại)
Nếu n>=5 thì n! sẽ có tận cùng là 0
=> 1!+2!+3!+4!+....+n! vs n>=5 thì sẽ có tận cùng là 3 do 1!+2!+3!+4! tận cùng =3
Mà 1 số chính phương ko thể chia 5 dư 3 (1 SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0;1;4- tính chất)
=> Với mọi n>=5 đều loại
vậy n=3.
Bài 3:
Do 26^3 có 2 chữ số tận cùng là 76
26^5 có 2 chữ số tận cùng là 76
26^7 có 2 chữ sốtận cùng là 76
Vậy ta suy ra là 26 mũ lẻ sẽ tận cùng =76
Vậy 26^2019 có 2 chữ số tận cùng là 76.
Đặt \(A=2.2^2+3.2^3+...+n.2^n\)
\(\Rightarrow2A=2.2^3+3.2^4+...+n.2^{n+1}\)
\(\Rightarrow A-2A=\)\(2.2^2+3.2^3+...+n.2^n\)\(-2.2^3-3.2^4-...-n.2^{n+1}\)
\(\Rightarrow-A=2.2^2+2^3+2^4+...+2^n-n.2^{n+1}\)
\(\Rightarrow-A=2^2+\left(2^2+2^3+2^4+...+2^{n+1}\right)-\left(n+1\right).2^{n+1}\)
\(\Rightarrow A=-2^2-\left(2^2+2^3+2^4+...+2^{n+1}\right)+\left(n+1\right).2^{n+1}\)
Đặt \(K=\left(2^2+2^3+2^4+...+2^{n+1}\right)\)
\(2K=\left(2^3+2^4+2^5+...+2^{n+2}\right)\)
\(2K-K=\left(2^3+2^4+2^5+...+2^{n+2}\right)\)\(-\left(2^2+2^3+2^4+...+2^{n+1}\right)\)
\(K=2^{n+2}-2^2\)
\(\Rightarrow A=-2^2-2^{n+2}+2^2+\left(n+1\right).2^{n+1}\)
\(\Rightarrow A=\left(n+1\right).2^{n+1}-2^{n+2}\)
\(\Rightarrow A=2^{n+1}\left(n+1-2\right)\)
\(\Rightarrow A=2^{n+1}\left(n-1\right)=2^{n+5}\Rightarrow2^4=n-1\Rightarrow n=17\)