Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(B=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\)
\(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)
\(4.B=1-\frac{1}{97}\)
\(4.B=\frac{96}{97}\)
\(B=\frac{96}{97}:4\)
\(B=\frac{24}{97}\)
Sửa đề: \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{2020}{2021}\) \(Đkxđ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2020}{2021}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{2020}{2021}\)
\(\Leftrightarrow\frac{x+2}{2021}=1\)
\(\Leftrightarrow x=2019\)
Vậy \(x=2019\)
2.
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+...+\frac{1}{2}.\left(\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{15}{93}:\frac{1}{2}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Rightarrow\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\Rightarrow\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow\)2x + 3 = 93
\(\Rightarrow\)2x = 93 - 3
\(\Rightarrow\)2x = 90
\(\Rightarrow\)x = 90 : 2 = 45
\(H=\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{33.37}\)
= \(\frac{3}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{33}-\frac{1}{37}\right)\)
= \(\frac{3}{4}\left(1-\frac{1}{37}\right)\)
= \(\frac{3}{4}.\frac{36}{37}=\frac{27}{37}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
\(\dfrac{2021}{1\cdot5}+\dfrac{2021}{5\cdot9}+...+\dfrac{2021}{x\cdot\left(x+4\right)}=505\)
\(2021\cdot\left(\dfrac{1}{1.5}+\dfrac{1}{5\cdot9}+...+\dfrac{1}{x\cdot\left(x+4\right)}\right)=505\)
\(\dfrac{2021}{4}\cdot\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{x\cdot\left(x+4\right)}\right)=505\)
\(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(1-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(\dfrac{1}{x+4}=\dfrac{1}{2021}\)
=> \(x+4=2021\)
=> \(x=2017\)
vậy \(x=2017\)
Ta có: \(\dfrac{2021}{1\cdot5}+\dfrac{2021}{5\cdot9}+...+\dfrac{2021}{x\left(x+4\right)}=505\)
\(\Leftrightarrow\dfrac{2021}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{x\left(x+4\right)}\right)=505\)
\(\Leftrightarrow1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(\Leftrightarrow-\dfrac{1}{x+4}=\dfrac{2020}{2021}\)
\(\Leftrightarrow x+4=\dfrac{-2021}{2020}\)
hay \(x=-\dfrac{10101}{2020}\)
\(\left(2^5.9-2^5.7\right)\div2^3-2021^0\)
\(=2^5\left(9-7\right)\div2^3-1\)
\(=2^6\div2^3-1\)
\(=2^3-1\)
\(=7\)
7