Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng nhiều quá zậy
\(25-y^2=8\left(x-2013\right)^2\)(*)
\(\Leftrightarrow y^2=25-8\left(x-2013\right)^2\)
Do \(VT=y^2\ge0\Leftrightarrow VP=25-8\left(x-2013\right)^2\ge0\)
\(\Leftrightarrow8\left(x-2013\right)^2\le25\Rightarrow0\le\left(x-2013\right)^2\le\frac{25}{8}< \frac{32}{8}=4\)
Mà \(\left(x-2013\right)^2\) là số chính phương nên \(\left(x-2013\right)^2\in\left\{0;1\right\}\)
\(\Rightarrow x-2013\in\left\{0;\pm1\right\}\)
Xét \(\left(x-2013\right)^2=0\Rightarrow x=2013\); thay vào (*) ta được :
\(25-y^2=8\left(2013-2013\right)^2\Leftrightarrow y^2=25\Rightarrow y=5\)(TM)
Xét \(x-2013=1\Rightarrow x=2014\)thay vào (*) ta được :
\(25-y^2=8\left(2014-2013\right)^2\Leftrightarrow25-y^2=8\Rightarrow y^2=17\)(loại vì \(y\in N\))
Xét \(x-2013=-1\Rightarrow x=2012\) thay vào (*) ta được :
\(25-y^2=8\left(2012-2013\right)^2\Rightarrow y^2=17\)(loại vì \(y\in N\))
Vậy \(\left(x;y\right)=\left(2013;5\right)\)
\(25-y^2=8\left(x-2013\right)^2\)
\(\Leftrightarrow\) \(8\left(x-2013\right)^2+y^2=25\) \(\left(\text{ *}\right)\)
Vì \(y^2\ge0\) nên \(\left(x-2013\right)^2\le\frac{25}{8}\)
Do đó: \(\left(x-2013\right)^2=0\) hoặc \(\left(x-2013\right)^2=1\)
+) Thay \(\left(x-2013\right)^2=1\) vào \(\left(\text{ *}\right)\) , ta có: \(y^2=17\) (loại)
+) Thay \(\left(x-2013\right)^2=0\) vào \(\left(\text{ *}\right)\), ta có: \(y^2=25\) \(\Leftrightarrow\) \(y=5\) hoặc \(y=-5\)
Vậy, \(x=2013\) ; \(y=5\) hoặc \(y=-5\)
I don't now
sorry
...................
nha
b) \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\)\(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)
Đặt: \(3x+3=a\)pt trở thành:
\(\left(a-5\right)a^2\left(a+5\right)+144=0\)
\(\Leftrightarrow\)\(a^4-25a^2+144=0\)
\(\Leftrightarrow\)\(\left(a-4\right)\left(a-3\right)\left(a+3\right)\left(a+4\right)=0\)
đến đây bạn tìm a rồi tính x
c) \(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(4x-6\right)\left(4x-4\right)-72=0\)
Đặt \(4x-5=a\)pt trở thành:
\(a\left(a-1\right)\left(a+1\right)-72=0\)
\(\Leftrightarrow\)\(a^3-a-72=0\)
p/s: ktra lại đề
d) \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
\(\Leftrightarrow\)\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)=0\)
\(\Leftrightarrow\)\(\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)
\(\Leftrightarrow\)\(\left(11x+2011\right)^2=0\)
đến đây làm nốt