Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
1:
=>|2x+5|=5
=>2x+5=5 hoặc 2x+5=-5
=>x=0 hoặc x=-5
2: =>|x-2|=3
=>x-2=3 hoặc x-2=-3
=>x=-1 hoặc x=5
3: =>|2x-1|=1
=>2x-1=1 hoặc 2x-1=-1
=>x=0 hoặc x=1
1,
a,\(4\sqrt{\dfrac{9}{2}}+\sqrt{2}+\sqrt{\dfrac{1}{18}}=4\sqrt{\dfrac{18}{4}}+\sqrt{2}+\sqrt{\dfrac{1}{9.2}}=4\dfrac{\sqrt{18}}{2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{1}{2}}=2\sqrt{9.2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{2}{4}}=2.3\sqrt{2}+\sqrt{2}+\dfrac{\sqrt{2}}{6}=6\sqrt{2}+\sqrt{2}+\sqrt{2}\dfrac{1}{6}=\dfrac{43}{6}\sqrt{2}\) b,\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}=4\sqrt{4.5}-3\sqrt{25.5}+5\sqrt{9.5}-15\dfrac{\sqrt{5}}{5}=4.2\sqrt{5}-3.5\sqrt{5}+5.3\sqrt{5}-3\sqrt{5}=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
*) Giải phương trình :
\(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\) ( ĐKXĐ : x \(\ge\) 2 )
\(\Leftrightarrow\sqrt{4\left(x-2\right)}+5\sqrt{x-2}-\sqrt{9\left(x-2\right)}=20\)
\(\Leftrightarrow2\sqrt{x-2}+5\sqrt{x-2}-3\sqrt{x-2}=20\)
\(\Leftrightarrow4\sqrt{x-2}=20\)
\(\Leftrightarrow\sqrt{x-2}=5\)
\(\Leftrightarrow x-2=25\)
\(\Leftrightarrow x=27\) ( thỏa mãn điều kiện )
Vậy phương trình có nghiệm x = 27 .
Bài 4:
a) Thay x=49 vào B ta có:
\(B=\dfrac{1-\sqrt{49}}{1+\sqrt{49}}=-\dfrac{3}{4}\)
b) \(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(A=\left[\dfrac{15-\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right]\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(A=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(A=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(A=\dfrac{1}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(A=\dfrac{1}{\sqrt{x}+1}\)
c) Ta có:
\(M=A-B=\dfrac{1}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\)
\(M=\dfrac{1-1+\sqrt{x}}{\sqrt{x}+1}\)
\(M=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(M=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}\)
Mà M nguyên khi:
\(1\) ⋮ \(\sqrt{x}+1\)
\(\Rightarrow\sqrt{x}+1\in\left\{1;-1\right\}\)
Mà: \(\sqrt{x}+1\ge1\)
\(\Rightarrow\sqrt{x}+1=1\)
\(\Rightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\left(tm\right)\)
Vậy M nguyên khi x=0
phải thêm đk p nguyên tố chứ bn?
\(p^4-1=\left(p^2-1\right)\left(p^2+1\right)\)
\(=\left(p^2-1\right)\left(p^2-4+5\right)\)
\(=\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)+5\left(p-1\right)\left(p+1\right)\)
+ p là SNT > 5
=> p k chia hết cho 5
=> \(p^2\) chia 5 dư 1 hoặc 4
\(\Rightarrow\orbr{\begin{cases}p^2-1⋮5\\p^2-4⋮5\end{cases}}\)
\(\Rightarrow\left(p^2-1\right)\left(p^2-4\right)⋮5\)
\(\Rightarrow\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)⋮5\) (1)
+ p là SNT > 5 => p là số lẻ
=> \(\left(p-1\right)\left(p+1\right)\)là tích 2 số chẵn liên tiếp
=> \(\left(p-1\right)\left(p+1\right)⋮8\) ( 2 )
\(\Rightarrow\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)⋮8\) (3)
+ p là số nguyên tố > 5
=> p k chia hết cho 3
\(\Rightarrow\orbr{\begin{cases}p-1⋮3\\p+1⋮3\end{cases}}\) ( do p - 1 , p , p + 1 là 3 số tự nhiên liên tiếp )
\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮3\) (4)
\(\Rightarrow\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)⋮3\) (5)
+ Từ (1) , (3) , (5) suy ra \(\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)⋮3.5.8\)
( do ba số 3,5,8 đôi một nguyên tố cùng nhau )
\(\Rightarrow\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)⋮120\) (*)
+ Tư (2) và (4) suy ra \(\left(p-1\right)\left(p+1\right)⋮24\) ( do (3,8) = 1 )
\(\Rightarrow5\left(p-1\right)\left(p+1\right)⋮120\) (**)
Từ (*) và (**) suy ra đpcm
(P/s :mk thử thôi nhé , k chắc có đúng đâu, sai thì bỏ qua nah)
Vì p>5 , p - nguyên tố \(\Rightarrow p-lẻ\)\(\Rightarrow p-1=2k\left(k=3,4,...\right)\)
\(\Rightarrow p+1=2k+2\Rightarrow p+1=2\left(k+1\right)\)
\(\Rightarrow\left(p-1\right)\left(p+1\right)=2k.2\left(k+1\right)=4k\left(k+1\right)\)
Mà k(k+1) là tích 2 số tự nhiên liên tiếp => \(k\left(k+1\right)⋮2\)
\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮8\)
Xét 3 số tự nhiên liên tiếp p-1 ; p ; p+1 ắt có 1 số chia hết cho 3 . Vì p là số nguyên tố lớn hơn 5 nên p không chia hết cho 3.
Do đó p-1 hoặc p+1 chia hết cho 3, suy ra
\(\hept{\begin{cases}\left(p-1\right)\left(p+1\right)⋮3\\\left(p-1\right)\left(p+1\right)⋮8\end{cases}}\)
Mà (3;8)=1 \(\Rightarrow\left(p-1\right)\left(p+1\right)⋮24\)
Lại có \(p^4-1=\left(p^2+1\right)\left(p-1\right)\left(p+1\right)\)
\(\Rightarrow p^4-1⋮24\)(1)
Mặt khác p-nguyên tố lớn hơn 5 suy ra p có các dạng 5n+1 , 5n+2, 5n+3, 5n+4 (n thuộc N)
Với p=5n+1 => p-1=5n \(⋮5\)=> \(p^4-1=\left(p^2+1\right)\left(p-1\right)\left(p+1\right)⋮5\)
Với p=5n+2 => \(p^2+1=\left(5n+2\right)^2+1=25n^2+20n+4+1=5\left(5n^2+4n+1\right)⋮5\)
\(\Rightarrow p^4-1=\left(p^2+1\right)\left(p-1\right)\left(p+1\right)⋮5\)
Với p=5n+3 => \(p^2+1=\left(5n+3\right)^2+1=25n^2+30n+10=5\left(5n^2+6n+2\right)⋮5\)
\(\Rightarrow p^4-1=\left(p^2+1\right)\left(p-1\right)\left(p+1\right)⋮5\)
Với p=5n+4 => \(p+1=5n+4+1=5\left(n+1\right)⋮5\)
\(\Rightarrow p^4-1=\left(p^2+1\right)\left(p-1\right)\left(p+1\right)⋮5\)
Khi đó \(p^4-1⋮5\)(2)
Từ (1) và (2) và (5;24)=1 Ta có \(p^4-1⋮120\)
So sánh đúng không á.
\(\sqrt{4}\left(1+\sqrt{5}\right)\\ =2\left(1+\sqrt{5}\right)=2+\sqrt{10}\)
Mà 10>5 nên \(\sqrt{10}>\sqrt{5}\)
=> \(2+\sqrt{5}< \sqrt{4}\left(1+\sqrt{5}\right)\)