K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

So sánh đúng không á.

\(\sqrt{4}\left(1+\sqrt{5}\right)\\ =2\left(1+\sqrt{5}\right)=2+\sqrt{10}\)

Mà 10>5 nên \(\sqrt{10}>\sqrt{5}\)

=> \(2+\sqrt{5}< \sqrt{4}\left(1+\sqrt{5}\right)\)

AH
Akai Haruma
Giáo viên
23 tháng 12 2022

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

1: 

=>|2x+5|=5

=>2x+5=5 hoặc 2x+5=-5

=>x=0 hoặc x=-5

2: =>|x-2|=3

=>x-2=3 hoặc x-2=-3

=>x=-1 hoặc x=5

3: =>|2x-1|=1

=>2x-1=1 hoặc 2x-1=-1

=>x=0 hoặc x=1

9 tháng 5 2018

hình như PP đặt ẩn phụ là của giải hpt thì phải ?

15 tháng 9 2017

1,

a,\(4\sqrt{\dfrac{9}{2}}+\sqrt{2}+\sqrt{\dfrac{1}{18}}=4\sqrt{\dfrac{18}{4}}+\sqrt{2}+\sqrt{\dfrac{1}{9.2}}=4\dfrac{\sqrt{18}}{2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{1}{2}}=2\sqrt{9.2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{2}{4}}=2.3\sqrt{2}+\sqrt{2}+\dfrac{\sqrt{2}}{6}=6\sqrt{2}+\sqrt{2}+\sqrt{2}\dfrac{1}{6}=\dfrac{43}{6}\sqrt{2}\) b,\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}=4\sqrt{4.5}-3\sqrt{25.5}+5\sqrt{9.5}-15\dfrac{\sqrt{5}}{5}=4.2\sqrt{5}-3.5\sqrt{5}+5.3\sqrt{5}-3\sqrt{5}=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)

15 tháng 9 2017

*) Giải phương trình :

\(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\) ( ĐKXĐ : x \(\ge\) 2 )

\(\Leftrightarrow\sqrt{4\left(x-2\right)}+5\sqrt{x-2}-\sqrt{9\left(x-2\right)}=20\)

\(\Leftrightarrow2\sqrt{x-2}+5\sqrt{x-2}-3\sqrt{x-2}=20\)

\(\Leftrightarrow4\sqrt{x-2}=20\)

\(\Leftrightarrow\sqrt{x-2}=5\)

\(\Leftrightarrow x-2=25\)

\(\Leftrightarrow x=27\) ( thỏa mãn điều kiện )

Vậy phương trình có nghiệm x = 27 .

21 tháng 8 2023

Bài 4:

a) Thay x=49 vào B ta có:

\(B=\dfrac{1-\sqrt{49}}{1+\sqrt{49}}=-\dfrac{3}{4}\)

b) \(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)

\(A=\left[\dfrac{15-\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right]\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{1}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(A=\dfrac{1}{\sqrt{x}+1}\)

c) Ta có: 

\(M=A-B=\dfrac{1}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\)

\(M=\dfrac{1-1+\sqrt{x}}{\sqrt{x}+1}\)

\(M=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(M=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}\)

Mà M nguyên khi:

\(1\) ⋮ \(\sqrt{x}+1\)

\(\Rightarrow\sqrt{x}+1\in\left\{1;-1\right\}\)

Mà: \(\sqrt{x}+1\ge1\)

\(\Rightarrow\sqrt{x}+1=1\)

\(\Rightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\left(tm\right)\)

Vậy M nguyên khi x=0

18 tháng 5 2019

phải thêm đk p nguyên tố chứ bn?

\(p^4-1=\left(p^2-1\right)\left(p^2+1\right)\)

\(=\left(p^2-1\right)\left(p^2-4+5\right)\)

\(=\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)+5\left(p-1\right)\left(p+1\right)\)

+ p là SNT > 5

=> p k chia hết cho 5

=> \(p^2\) chia 5 dư 1 hoặc 4

\(\Rightarrow\orbr{\begin{cases}p^2-1⋮5\\p^2-4⋮5\end{cases}}\)

\(\Rightarrow\left(p^2-1\right)\left(p^2-4\right)⋮5\)

\(\Rightarrow\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)⋮5\)     (1)

+ p là SNT > 5  => p là số  lẻ

=> \(\left(p-1\right)\left(p+1\right)\)là tích 2 số chẵn liên tiếp

=> \(\left(p-1\right)\left(p+1\right)⋮8\)                 ( 2 )

\(\Rightarrow\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)⋮8\)          (3)

+ p là số nguyên tố > 5

=> p k chia hết cho 3

\(\Rightarrow\orbr{\begin{cases}p-1⋮3\\p+1⋮3\end{cases}}\) ( do p - 1 , p , p + 1 là 3 số tự nhiên liên tiếp )

\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮3\)       (4)

\(\Rightarrow\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)⋮3\)            (5)

+ Từ (1) , (3) , (5) suy ra \(\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)⋮3.5.8\)

( do ba số 3,5,8 đôi một nguyên tố cùng nhau )

\(\Rightarrow\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)⋮120\)         (*)

+ Tư (2) và (4) suy ra \(\left(p-1\right)\left(p+1\right)⋮24\) ( do   (3,8) = 1 )

\(\Rightarrow5\left(p-1\right)\left(p+1\right)⋮120\)  (**)

Từ (*) và (**) suy ra đpcm

18 tháng 5 2019

(P/s :mk thử thôi nhé , k chắc có đúng đâu, sai thì bỏ qua nah)

Vì p>5 , p - nguyên tố \(\Rightarrow p-lẻ\)\(\Rightarrow p-1=2k\left(k=3,4,...\right)\)

\(\Rightarrow p+1=2k+2\Rightarrow p+1=2\left(k+1\right)\)

\(\Rightarrow\left(p-1\right)\left(p+1\right)=2k.2\left(k+1\right)=4k\left(k+1\right)\)

Mà k(k+1) là tích 2 số tự nhiên liên tiếp => \(k\left(k+1\right)⋮2\)

\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮8\)

Xét 3 số tự nhiên liên tiếp p-1 ; p ; p+1  ắt có 1 số chia hết cho 3 . Vì p là số nguyên tố lớn hơn 5 nên p không chia hết cho 3.

Do đó p-1 hoặc p+1 chia hết cho 3, suy ra

\(\hept{\begin{cases}\left(p-1\right)\left(p+1\right)⋮3\\\left(p-1\right)\left(p+1\right)⋮8\end{cases}}\)

Mà (3;8)=1 \(\Rightarrow\left(p-1\right)\left(p+1\right)⋮24\)

Lại có \(p^4-1=\left(p^2+1\right)\left(p-1\right)\left(p+1\right)\)

\(\Rightarrow p^4-1⋮24\)(1)

Mặt khác p-nguyên tố lớn hơn 5 suy ra p có các dạng 5n+1 , 5n+2, 5n+3, 5n+4 (n thuộc N)

Với p=5n+1 => p-1=5n \(⋮5\)=> \(p^4-1=\left(p^2+1\right)\left(p-1\right)\left(p+1\right)⋮5\)

Với p=5n+2 =>  \(p^2+1=\left(5n+2\right)^2+1=25n^2+20n+4+1=5\left(5n^2+4n+1\right)⋮5\)

\(\Rightarrow p^4-1=\left(p^2+1\right)\left(p-1\right)\left(p+1\right)⋮5\)

Với p=5n+3 => \(p^2+1=\left(5n+3\right)^2+1=25n^2+30n+10=5\left(5n^2+6n+2\right)⋮5\)

\(\Rightarrow p^4-1=\left(p^2+1\right)\left(p-1\right)\left(p+1\right)⋮5\)

Với p=5n+4 => \(p+1=5n+4+1=5\left(n+1\right)⋮5\)

\(\Rightarrow p^4-1=\left(p^2+1\right)\left(p-1\right)\left(p+1\right)⋮5\)

Khi đó \(p^4-1⋮5\)(2)

Từ (1) và (2) và (5;24)=1 Ta có \(p^4-1⋮120\)