Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
`\frac{x-1}{34}+\frac{x-2}{34}=\frac{x-3}{32}+\frac{x-4}{31}`
`<=>\frac{x-1}{34}-1+\frac{x-2}{33}-1=\frac{x-3}{32}-1+\frac{x-4}{31}-1`
`<=>\frac{x-35}{34}+\frac{x-35}{33}=\frac{x-35}{32}+\frac{x-35}{31}`
`<=>(x-35)(\frac{1}{34}+\frac{1}{33}-\frac{1}{32}-\frac{1}{31})=0`
`<=>x-35=0`
`<=>x=35`
a) =\(\left(\frac{1}{4}\right)^3\cdot2^5=\frac{1}{2^6}2^5=0,5\)
b) \(=\left(\frac{1}{8}\right)^3\cdot8^4\cdot10^4=80.000\)
c) \(=8^2\cdot\frac{4^5}{2^{20}}=\frac{2^6\cdot2^{10}}{2^{20}}=\frac{1}{2^4}=0,0625\)
d) = \(\frac{81^{11}\cdot3^{17}}{27^{10}\cdot9^{15}}=\frac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=\frac{3^{61}}{3^{60}}=3\)
\(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
\(\Rightarrow x+\frac{3}{4}=\pm\frac{1}{3}\)
\(\cdot x+\frac{3}{4}=\frac{1}{3}\)
\(x=-\frac{5}{12}\)
\(\cdot x+\frac{3}{4}=-\frac{1}{3}\)
\(x=-\frac{13}{12}\)
Ta có: ( 17 + 34 + a ):3=32
suy ra : 17 + 34 + a = 96
a = 96 -(17 + 34)
a = 45
Vậy a = 45
Ta có (17+34+a):3=32
=>17+34+a=32.3=96
=>a=96-(17+34)
=>a=45
Vậy a=45
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).....+\left(1+\frac{1}{99.101}\right)\)
\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{99.101+1}{99.101}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)
\(=\frac{2.3.4.....100}{1.2.3.....99}.\frac{2.3.4.....100}{3.4.5.....101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)