Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/x-4/-16=-9
/x-4/=-9+16
/x+4/=7
\(\Rightarrow\)x+4=7 hoặc x+4=-7
x=7-4 x=-7-4
x=3 x=-3
ủ hộ **** cho mình nhaLê Vũ Việt Hoàng
Có
\(6x+1⋮2x-1\)
\(3\left(2x-1\right)⋮2x-1\)
\(\Rightarrow\left(\left(6x+1\right)-3\left(2x-1\right)\right)⋮2x-1\)
\(\Rightarrow\left(6x+1-6x+3\right)⋮2x-1\)
\(\Rightarrow4⋮2x-1\)
\(\Rightarrow\left(2x-1\right)\inƯ_{\left(4\right)}\)
mà \(2x-1\)lẻ
\(\Rightarrow2x-1\in\pm1\)
Ta có bảng giá trị
2x-1 | 1 | -1 |
x | 1 | 0 |
Thử lại : Ta thấy đều thỏa mãn
A = 4+(22+23+24+...+220)
A-4 = 22+23+24+...+220
2(A-4) = 23+24+25+...+221
A-4=2(A-4)-(A-4) = (23+24+25+...+221)-(22+23+24+...+220)
A-4 = (23-23)+(24-24)+(25-25)+...+(220-220)+(221-22)
A-4 = 221-4
A = 221-4+4
A = 221
20n+9 và 30n+13 nguyên tố cùng nhau khi ƯCLN(20n+9;30n+12)=\(\pm\)1
Gọi ƯCLN(20n+9;30n+12) là d
\(\Rightarrow\)20n+9 \(⋮\)d
30n+13 \(⋮\)d
\(\Rightarrow\)3.(20n+9)=60n+27\(⋮\)d
2.(30n+13)=60n+26 \(⋮\)d
\(\Rightarrow\)(60n+27)-(60n+26)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d\(\in\)ƯCLN(1)={1;-1}
Vậy 20n+9 và 30n+13 nguyên tố cùng nhau.
tóm lại cách làm bài này là:
gọi ưcln của những số cần chứng minh là d
sau đó tìm và nhân sao cho số n của 2 số bằng nhau.
VD: như bài trên mk lấy là số 60
sau đó trừ đi lấy kết quả ( bạn yên tâm tất cả kết quả đều là 1 hết, nếu không phải thì đề bài sai)
rồi làm như mình làm ở trên.
bài nào khó thì gửi cho mk nha. mk sẽ giúp bạn nhiệt tình. hi hi....
\(A=2019\times2021=\left(2021-1\right)\times\left(2021+1\right)=2021^2-1< 2021^2=B.\)
Sửa : \(x+16⋮x+1\)
\(x+1+15⋮x+1\)
\(15⋮x+1\)hay \(x+1\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
x + 1 | 1 | 3 | 5 | 15 |
x | 0 | 2 | 4 | 14 |
A\(=\frac{-3}{2}\cdot\frac{-4}{3}\cdot\frac{-5}{4}\cdot...\cdot\frac{-201}{200}\)
\(=\left(-1\right)\cdot\frac{3}{2}\cdot\left(-1\right)\cdot\frac{4}{3}\cdot\left(-1\right)\cdot\frac{5}{4}\cdot...\cdot\left(-1\right)\cdot\frac{201}{200}\)
\(=\left[\left(-1\right)\cdot\left(-1\right)\cdot\left(-1\right)\cdot...\cdot\left(-1\right)\right]\cdot\left(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{201}{200}\right)\)(Có 199 thừa số -1)
\(=\left(-1\right)\cdot\left(\frac{3\cdot4\cdot5\cdot...\cdot201}{2\cdot3\cdot4\cdot...\cdot200}\right)\)
\(=\left(-1\right)\cdot\frac{201}{2}\)
\(=-\frac{201}{2}\)
a) \(x-\dfrac{3}{5}=\dfrac{4}{-10}\)
\(x=\dfrac{4}{-10}+\dfrac{3}{5}\)
\(x=\dfrac{-4}{10}+\dfrac{6}{10}\)
\(x=\dfrac{1}{5}\)
b) \(\dfrac{3}{x}-2=\dfrac{4}{x}+4\)
\(\dfrac{3}{x}-2+2=\dfrac{4}{x}+4+2\)
\(\dfrac{3}{x}=\dfrac{4}{x}+4\)
\(\dfrac{3}{x}=\dfrac{4x+4}{x}\)
\(3x=\left(4x+4\right)x\)
\(3x=5x\cdot x+4x\)
\(3x=x\left(5x+4\right)\)
\(3=5x+4\)
\(5x=-1\)
\(x=\dfrac{-1}{5}\)
\(2^4\cdot38-x\cdot16=24\)
\(16\cdot38-x\cdot16=24\)
\(16\cdot\left(28-x\right)=24\)
\(28-x=\frac{24}{16}\)
\(28-x=\frac{3}{2}\)
\(x=28-\frac{3}{2}\)
\(x=\frac{53}{2}\)
Sửa nha bạn :
\(2^4\cdot38-x\cdot16=24\)
\(16\cdot38-x\cdot16=24\)
\(16\left(38-x\right)=24\)
\(38-x=\frac{3}{2}\)
\(x=38-\frac{3}{2}\)
\(x=\frac{73}{2}\)