Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
Chứng minh 2 + 2² + 2³ + 2⁴ + ... + 2²⁰ chia hết cho 3 và 5
Đặt A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2²) + (2³ + 2⁴) + ... + (2¹⁹ + 2²⁰)
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2¹⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2¹⁹.3
= 3.(2 + 2³ + ... + 2¹⁹) ⋮ 3
Vậy A ⋮ 3 (1)
A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁹.30
= 30.(1 + 2⁴ + ... + 2¹⁹)
= 5.6.(1 + 2⁴ + ... + 2¹⁹) ⋮ 5
Vậy A ⋮ 5 (2)
Từ (1) và (2) ⇒ A chia hết cho 3 và 5
Đặt \(A=3^2+3^3+3^4+...+3^{101}\)
\(A=\left(3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9\right)+...+\left(3^{98}+3^{99}+3^{100}+3^{101}\right)\)
\(A=3\left(3+3^2+3^3+3^4\right)+3^5\left(3+3^2+3^3+3^4\right)+...+3^{97}\left(3+3^2+3^3+3^4\right)\)
\(A=3.\left(3+9+27+81\right)+3^5\left(3+9+27+81\right)+...+3^{97}\left(3+9+27+81\right)\)
\(A=3.120+3^5.120+...+3^{97}.120\)
\(A=120\left(3+3^5+...+3^{97}\right)⋮120\)
Vậy \(A⋮120\)
Chúc bạn học tốt ~
1) ta có A= 4+4^2 +4^3 +4^4 +...+4^120 =( 4+ 4^2 )+ (4^3+4^4) +...+ (4^119+4^120)
=4.(1+4) +4^3.(1+4) +...+4^119.(1+4) = (1+4).(4+4^3+...+4^119) =5 .(4+4^3+..+4^119)
mà 4+4^3+4^119 chia hết cho 4 , UCLN(4,5)=1 =>5.(4+4^3+...+4^119) chia het cho 20 => A chia het cho 20
2) ta coA= 4+4^2+4^3 +...+4^120 = (4+4^2+4^3) +...+ (4^118+4^119+4^120)
=4.(1+4+4^2)+...+4^118.(1+4+4^2) = 21.( 4+..+4^118) chia het cho 21 => A chia het cho 21
do A chia het cho 20, 21 mà UCLN(20,21) =1 nên A chia hết cho 20 .21 => A chia hết cho 420
Chia hết cho 7
A=2+2^2+2^3+...+2^120
A=(2+2^2+2^3)+(2^4+2^5+2^6)...+(2^118+2^119+2^120)
A=2.(1+2+2^2)+2^4(1+2+2^2)+2^118(1+2+2^2)
A=2.7+2^4.7+...+2^118.7
Ta có A=2.7+2^4.7+...+2^118.7 chia hết cho 7
=>A=2+2^2+2^3+...+2^120 chia hết cho 7
Chia hết cho 21
Ta có:
A=2+22+23+...+2120
A=(2+22+23+24+25)+...+(2116+2117+2118+2119+2120)
A=2.(1+2+22+23+24)+...+2116.(1+2+22+23+24)
A=2.63+...+2116.63
A=63.(2+...+2116)
A=21.3.(2+...+2116)⋮⋮21
Vậy A chia hết cho 21
Chia hết cho 21