K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

đề bài hơi khó hiểu nha

a: \(M=\dfrac{631}{315}\cdot\dfrac{1}{651}-\dfrac{1}{105}\cdot\dfrac{2603}{651}-\dfrac{4}{315\cdot651}+\dfrac{4}{105}\)

\(=\dfrac{1}{315\cdot651}\cdot\left(631-4\right)-\dfrac{1}{105}\left(\dfrac{2603}{651}-4\right)\)

\(=\dfrac{1}{105}\cdot\dfrac{1}{1953}\cdot627+\dfrac{1}{105\cdot651}\)

\(=\dfrac{1}{105\cdot651}\left(\dfrac{1}{3}\cdot627+1\right)=\dfrac{1}{105\cdot651}\cdot210=\dfrac{2}{651}\)

b: \(N=\dfrac{1095}{547}\cdot\dfrac{3}{211}-\dfrac{546}{547\cdot211}-\dfrac{4}{547\cdot211}\)

\(=\dfrac{1}{547\cdot211}\left(1095\cdot3-546-4\right)\)

\(=\dfrac{1}{547\cdot211}\cdot2735=\dfrac{5}{211}\)

28 tháng 7 2019

A = (x - 1) (x2 - 2x + 1) + 4x(x + 1)(x - 1) - 3(1 - x)(x2 + x + 1)

= (x - 1) (x2 - 2x + 1) + 4x(x + 1)(x - 1) + 3(x - 1)(x2 + x + 1)

= (x - 1) [x2 - 2x + 1 + 3(x2 + x + 1) + 4x(x + 1)]

= (x - 1) (x2 - 2x + 1 +3x2 + 3x + 3 + 4x2 + 4x)

= (x - 1) (8x2 + 5x + 4)

Vậy A = (x - 1) (8x2 + 5x + 4)

a: \(=\dfrac{\left(2\cdot547+1\right)\cdot3}{547\cdot211}-\dfrac{546}{547\cdot211}-\dfrac{4}{547\cdot211}\)

\(=\dfrac{2735}{547\cdot211}=\dfrac{5}{211}\)

b: x=7 nên x+1=8

\(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)

\(=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-x^{12}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}-...-x^3-x^2+x^2+x-5\)

=x-5=7-5=2

26 tháng 8 2018

\(2\dfrac{1}{547}.\dfrac{3}{211}-\dfrac{546}{547}.\dfrac{1}{211}-\dfrac{4}{547.211}\)

\(=\left(2+\dfrac{1}{547}\right).3.\dfrac{1}{211}-\left(1-\dfrac{1}{547}\right).\dfrac{1}{211}-4.\dfrac{1}{547}.\dfrac{1}{211}\)

Đặt \(a=\dfrac{1}{547};b=\dfrac{1}{211}\)

Thay \(a=\dfrac{1}{547};b=\dfrac{1}{211}\) vào biểu thức trên , ta được :

\(\left(2+a\right).3b-\left(1-a\right)b-4ab\)

\(=6b+3ab-b+ab-4ab\)

\(=5b\)

\(=5.\dfrac{1}{211}\)

\(=\dfrac{5}{211}\)

Vậy g/t biểu thức trên là : \(\dfrac{5}{211}\)

30 tháng 3 2017

ta có: \(28+211+2n=239+2n\)

Đặt \(239+2n=t^2\left(t\in N\right)\) \(\Rightarrow225+14+2n=t^2\)

\(\Rightarrow14+2n=t^2-15^2\Rightarrow2\left(n+7\right)=\left(t+15\right)\left(t-15\right)\)

\(\left(t+15\right)\left(t-15\right)⋮2\) mà 2 là số nguyên tố

nên \(\left(t+15\right)⋮2\)\(\left(t-15\right)⋮2\)

\(\Rightarrow t=2k\pm15\left(k\in N\right)\)

\(\Rightarrow2\left(n+7\right)=\left(2k\pm15\right)^2-15^2\)

\(\Rightarrow2\left(n+7\right)=4k^2\pm60k+15^2-15^2\)

\(\Rightarrow2\left(n+7\right)=4k^2\pm60k\)

\(\Rightarrow2\left(n+7\right)=2\left(2k^2\pm30k\right)\)

\(\Rightarrow n+7=2k^2\pm30k\Rightarrow n=2k^2\pm30k-7\)

Vậy với \(n=2k^2\pm30k-7\)

thì \(28+211+2n\) là số chính phương

30 tháng 3 2017

hình như n = -35; -7; 25

26 tháng 12 2017

https://goo.gl/BjYiDy

26 tháng 12 2017

Ta có : n3 - 2n + 3n + 3 

= n3 - n + 3 

= n(n2 - 1) 

= n(n - 1)(n + 1) + 3 

Để n3 - 2n + 3n + 3 chia hết cho n - 1

=> n(n - 1)(n + 1) + 3  chia hết cho n - 1

=> 3  chia hết cho n - 1

=> n - 1 thuộc Ư(3) = {-3;-1;1;3}

=> n = {-2;0;2;4}

1,\(P=n^4-4-\left(n^2-2\right)\left(5n-9\right)\)

\(P=\left(n^2+2\right)\left(n^2-2\right)-\left(n^2-2\right)\left(5n-9\right)\)

\(P=\left(n^2-2\right)\left(n^2+2-5n+9\right)\)

\(P=\left(n^2-2\right)\left(n^2-5n+7\right)\)

Vậy......