Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=1/1.3 + 1/3.5 + ...+ 1/2015.2017
M=1/2 .(2/1.3 + 2/3.5 +....+2/2015.2017
M=1/2.(1-1/3+1/3-1/5+...+1/2015-1/2017)
M=1/2.(1-1/2017)
M=1/2.2016/2017
M=1008/2017
Vật M=1008/2017
bạn k giúp mk nhé
chỉnh đề
\(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+....+\frac{4}{2015.2017}\)
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=2\left(1-\frac{1}{2017}\right)\)
\(=2.\frac{2016}{2017}=\frac{4032}{2017}\)
p/s: chúc bạn học tốt
\(A=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{2015.2017}\)
\(A=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(A=2\left(1-\frac{1}{2017}\right)\)
\(A=\frac{2016.2}{2017}\)
Ta có: \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)
\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
N = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2005 - 1/2006
= 1/1 - 1/2006
= 2006/2006 - 1/2006
= 2005/2006
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{1007}{2015}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1007}{2015}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{1007}{2015}.2=\frac{2014}{2015}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2014}{2015}=\frac{1}{2015}\)
\(\Rightarrow x+2=2015\)
\(\Rightarrow x=2013\)
=\(\frac{1.3.2.4.3.5...2016.2018}{2.2.3.3.4.4...2017.2017}\)
Ta tách thành hai dãy trên cả mẫu và tử và được \(\frac{\left(1.2.3...2016\right).\left(3.4.5...2018\right)}{\left(2.3.4...2017\right).\left(2.3.4...2017\right)}\)
Giờ thì sẽ rút gọn được kết quả=\(\frac{2018}{2017.2}=\frac{1009}{2017}\)
\(S=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{29\cdot31}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{29}-\dfrac{1}{31}\\ =\dfrac{1}{1}-\dfrac{1}{31}\\ =\dfrac{30}{31}\)
mà \(\dfrac{30}{31}>\dfrac{2014}{2015}\Rightarrow S>P\)
So sánh vs j nhỉ .-.?
`S=1-1/3+1/3-1/5+...+1/29-1/31`
`S=1-1/31=30/31`
bạn làm ntn
ta có
\(\frac{1.2.3.....2016}{2.3.4.....2017}.\frac{3.4.5.....2018}{2.3.4.....2017}\)
và rút gọn
\(S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{29}-\dfrac{1}{31}=1-\dfrac{1}{31}=\dfrac{30}{31}\)
P=2014/2015=1-1/2015
mà 1/31>1/2015
nên S<P
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2015.2017}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\)
= \(\frac{1}{1}-\frac{1}{2017}\)
= \(\frac{2016}{2017}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(=\frac{1}{1}-\frac{1}{2017}\)
\(=\frac{2016}{2017}\)