Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x thỏa mãn điều kiện :
a) (x+12)2 - 92 = 0
b) 20x3-132+7x = 45x2-38x
c) 8x3+12x2+6x+7-3(2x+1)2 = 6
Ta có : (x + 12)2 - 92 = 0
<=> (x + 12)2 = 92
=> (x + 12)2 = 81
\(\Leftrightarrow\orbr{\begin{cases}\left(x+12\right)^2=9^2\\\left(x+12\right)^2=\left(-9\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=9\\x+12=-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-21\end{cases}}\)
tìm x thỏa mãn điều kiện :
a) (x+12)2 - 92 = 0
b) 20x3-152+7x = 45x2-38x
c) 8x3+12x2+6x+7-3(2x+1)2 = 6
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
* 45x(3 - x) = 15x(x - 3)3
\(\Leftrightarrow\) 45x(3 - x) - 15x(x - 3)3 = 0
\(\Leftrightarrow\) 45x(3 - x) + 15x(3 - x)3 = 0
\(\Leftrightarrow\) 15x(3 - x)[3 + (3 - x)2] = 0
\(\Leftrightarrow\left[{}\begin{matrix}15x=0\\3-x=0\\3+\left(3-x\right)^2=0\end{matrix}\right.\)
Vì 3 + (3 - x)2 > 0 với mọi x
\(\Rightarrow\) 15x = 0 hoặc 3 - x = 0
\(\Leftrightarrow\) x = 0 và x = 3
Vậy S = {0; 3}
* 7x2 + 14x + 7 = 3x2 + 3x
\(\Leftrightarrow\) 7(x2 + 2x + 1) = 3x(x + 1)
\(\Leftrightarrow\) 7(x + 1)2 = 3x(x + 1)
\(\Leftrightarrow\) 7(x + 1)2 - 3x(x + 1) = 0
\(\Leftrightarrow\) (x + 1)[7(x + 1) - 3x] = 0
\(\Leftrightarrow\) (x + 1)(7x + 7 - 3x) = 0
\(\Leftrightarrow\) (x + 1)(4x + 7) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{-7}{4}\end{matrix}\right.\)
Vậy S = {-1; \(\frac{-7}{4}\)}
* 3x2 - 12x + 12 = x4 - 8x
\(\Leftrightarrow\) 3(x2 - 4x + 4) = x(x3 - 8)
\(\Leftrightarrow\) 3(x - 2)2 = x(x - 2)(x2 + 2x + 4)
\(\Leftrightarrow\) 3(x - 2)2 - x(x - 2)(x2 + 2x + 4) = 0
\(\Leftrightarrow\) (x - 2)[3(x - 2) - x(x2 + 2x + 4)] = 0
\(\Leftrightarrow\) (x - 2)(3x - 6 - x3 - 2x2 - 4x) = 0
\(\Leftrightarrow\) (x - 2)(-x3 - 2x2 - x - 6) = 0
\(\Leftrightarrow\) -1(x - 2)(x3 + 2x2 + x + 6) = 0
\(\Leftrightarrow\) (x - 2)[x(x2 + 2x + 1) + 6] = 0
\(\Leftrightarrow\) (x - 2)[x(x + 1)2 + 6] = 0
Ta có: x(x + 1)2 + 6 = 0
\(\Leftrightarrow\) x(x + 1)2 = -6
Nếu x = -2 thì (x + 1)2 = 3 hay (x + 1)2 + 3 = 0
mà (x + 1)2 + 3 > 0 với mọi x nên x không thỏa mãn giá trị trên
Nếu x = 2 thì (x + 1)2 = -3 (loại vì KTM)
Nếu x = 1 thì (x + 1)2 = -6 (loại vì KTM)
Nếu x = -1 thì (x + 1)2 = 6
Thay x = -1 vào pt (x + 1)2 = 6 ta được:
(-1 + 1)2 = 6
\(\Leftrightarrow\) 0 = 6 (KTM)
Từ đó suy ra phương trình x(x + 1)2 + 6 = 0 vô nghiệm
\(\Rightarrow\) x - 2 = 0
\(\Leftrightarrow\) x = 2
Vậy S = {2}
* y2 - x2 = x3 - 3x2y + 3xy2 - y3
\(\Leftrightarrow\) (y - x)(y + x) = (x - y)3
\(\Leftrightarrow\) (y - x)(y + x) - (x - y)3 = 0
\(\Leftrightarrow\) (y - x)(y + x) + (y - x)3 = 0
\(\Leftrightarrow\) (y - x)[y + x + (y - x)2] = 0
Vì y + x + (y - x)2 > 0 với mọi x
\(\Rightarrow\) y - x = 0
\(\Leftrightarrow\) x = y
Vậy S = {y}
Chúc bn học tốt!!
\(8x^3+12x^2+6x+7-3\left(2x+1\right)^2=6\)
\(\left(2x\right)^3+3\times\left(2x\right)^2\times1+3\times2x\times1^2+1^3+6-3\left(2x+1\right)^2=6\)
\(\left(2x+1\right)^3-3\left(2x+1\right)^2=6-6\)
\(\left(2x+1\right)^2\left(2x+1-3\right)=0\)
\(\left(2x+1\right)^2\left(2x-2\right)=0\)
\(2\left(2x+1\right)^2\left(x-1\right)=0\)
\(\left[\begin{array}{nghiempt}2x+1=0\\x-1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=1\end{array}\right.\)
\(20x^3-15x^2+7x=45x^2-38x\)
\(20x^3-15x^2-45x^2+7x+38x=0\)
\(20x^3-60x^2+45x=0\)
\(5x\left(4x^2-12x+9\right)=0\)
\(5x\left(2x-3\right)^2=0\)
\(\left[\begin{array}{nghiempt}x=0\\2x-3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{3}{2}\end{array}\right.\)