K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

Thử dùng dãy tỉ số "=" nhau xem sao:

\(\hept{\begin{cases}\frac{x}{105}=\frac{y}{90}\\\frac{y}{24}=\frac{z}{21}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{420}=\frac{y}{360}\\\frac{y}{360}=\frac{z}{315}\end{cases}}\Leftrightarrow\frac{x}{420}=\frac{y}{360}=\frac{z}{315}\)

Theo t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{420}=\frac{y}{360}=\frac{z}{315}=\frac{x+y+z}{420+360+315}=\frac{4}{15}\)

Suy ra \(\hept{\begin{cases}x=\frac{4}{15}.420=112\\y=\frac{4}{15}.360=96\\z=\frac{4}{15}.315=84\end{cases}}\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Từ \(\left\{\begin{matrix} \frac{x}{105}=\frac{y}{90}\\ \frac{y}{24}=\frac{z}{21}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x}{420}=\frac{y}{360}\\ \frac{y}{360}=\frac{z}{315}\end{matrix}\right.\) \(\Rightarrow \frac{x}{420}=\frac{y}{360}=\frac{z}{315}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{420}=\frac{y}{360}=\frac{z}{315}=\frac{x+y+z}{420+360+315}=\frac{292}{1095}=\frac{4}{15}\)

\(\Rightarrow \left\{\begin{matrix} x=\frac{4}{15}.420=112\\ y=\frac{4}{15}.360=96\\ z=\frac{4}{15}.315=84\end{matrix}\right.\)

15 tháng 6 2016

A = ((20 + 1) . 20 : 2) . 2 = 420

B = (25 + 20) . 6  : 2 = 135

C = ( 33 + 26) . 8 : 2 = 236

D = (1 + 100) .100 : 2 = 5050

15 tháng 6 2016

Toán lướp 9 dễ như vậy à bạn

29 tháng 1 2022

a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)

\(\sqrt{6}< \sqrt{6,25}=2,5\)

\(\sqrt{12}< \sqrt{12,25}=3,5\)

\(\sqrt{20}< \sqrt{20,25}=4,5\)

=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)

Vậy P < 12

30 tháng 1 2022

Answer:

ý a, tham khảo bài làm của @xyzquynhdi

\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)

\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

29 tháng 8 2019

a/ \(\sqrt{2}+\sqrt{6}\)

b/ Sửa đề:

\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)

c/ \(1+\sqrt{2}+\sqrt{5}\)

29 tháng 8 2019

giải rõ ra hộ mình với

29 tháng 8 2016

20 < 25 => \(\sqrt{20}< \sqrt{25}\)= 5 => 20 + \(\sqrt{20}\)< 20 + 5 = 25 => \(\sqrt{20+\sqrt{20}}< \sqrt{25}\)= 5

Tiếp tục như vậy,ta có B < 5 (1)

24 < 27 => \(\sqrt[3]{24}< \sqrt[3]{27}\)= 3 => 24 +\(\sqrt[3]{24}\)< 24 + 3 = 27 => \(\sqrt[3]{24+\sqrt[3]{24}}< \sqrt[3]{27}\)= 3

Tiếp tục như vậy,ta có C < 3 (2).Cộng (1) và (2),vế theo vế,ta có B + C < 5 + 3 = 8

Em mới học lớp 7 thôi,chưa biết chứng minh B + C > 7.

29 tháng 8 2016

19,36 < 20 < 25 => 4,4 <\(\sqrt{20}\)< 5 => 4,4 < \(\sqrt{20}< \sqrt{20+4,4}\) <\(\sqrt{20+\sqrt{20}}\) <\(\sqrt{20+5}=5\)

=> 4,4 <\(\sqrt{20+4,4}< \sqrt{20+\sqrt{20+\sqrt{20}}}\)\(\sqrt{20+5}\)= 5

Tiếp tục như vậy,ta có 4,4 < B < 5 (1)

17,576 < 24 < 27 => 2,6 <\(\sqrt[3]{24}\)< 3 => 2,6 <\(\sqrt[3]{24}< \sqrt[3]{24+2,6}< \sqrt[3]{24+\sqrt[3]{24}}< \sqrt[3]{24+3}\)= 3

=> 2,6 <\(\sqrt[3]{24+2,6}< \sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24}}}< \sqrt[3]{24+3}\)= 3

Tiếp tục như vậy,ta có 2,6 < C < 3 (2).Cộng (1) và (2),vế theo vế,ta có 7 < B + C < 8 (đpcm)

P/S : Thay vì dùng 4,4 và 2,6 có thể dùng a và b thỏa mãn a2 < 20 ; b< 24 ; a + b = 7

        Thay vì dùng 5 và 3 có thể dùng m và n thoả mãn m2 > 20 ; n3 > 24 ; m + n = 8

26 tháng 12 2018

???????????????????????????
where are đề bài

where are đề bài

?????????????????

26 tháng 12 2018

pt là gì