Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2015^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\right)\)
\(=1-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\right)>1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(=1-\left(1-\frac{1}{2015}\right)=1-\frac{2014}{2015}=\frac{1}{2015}\)
=> \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2015^2}>\frac{1}{2015}\left(\text{đpcm}\right)\)
\(=\left[6-3\cdot\dfrac{1}{25}+\dfrac{3}{4}\right]:1\)
=6-3/25+3/4
=600/100-12/100+75/100
=663/100
a: \(2014^0+\left(-5\right)+2010=1-5+2010=2006\)
b: \(=\left(4+\dfrac{7}{13}+\dfrac{6}{13}\right)^3=5^3=125\)
c: \(\left(-\dfrac{2}{3}\right)^{2015}\cdot x=\left(-\dfrac{2}{3}\right)^{2017}\)
\(\Leftrightarrow x=\left(-\dfrac{2}{3}\right)^{2017}:\left(-\dfrac{2}{3}\right)^{2015}=\left(-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)