K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

\(2005^{2007}+2007^{2005}\)

\(=(2005^{2007}+1)+(2007^{2005}-1)\)

\(=(2005^{2007}+1^{2007})+(2007^{2005}-1^{2005})\)

\(2005^{2007}+1^{2007}⋮(2005+1)\)

\(2007^{2005}-1^{2005}⋮(2007-1)\)

Nên \(2005^{2007}+1^{2007}⋮2006\)

\(2007^{2005}-1^{2005}⋮2006\)

\(\Rightarrow(2005^{2007}+1^{2007})+(2007^{2005}-1^{2005})⋮2006\)

\(\Rightarrow2005^{2007}+2007^{2005}⋮2006\)

17 tháng 8 2018
Giúp mình với Mai đi học rồi
17 tháng 8 2018

mik ko biết sao giúp

17 tháng 8 2018

Huhu chúng ta cùng cảnh  ngộ

18 tháng 8 2018

uk . mk thấy bạn đăng nhưng ko ai trả lời thì mk đăng hộ vs cả bài này mk cũng biết làm hihi

28 tháng 2 2016

2006^2007 đồng dư với 1 (mod 5)

2007^2008 đồng dư với 1  (mod 5)

2008^2009 đồng dư với 3 (mod 5)

Vậy P đồng dư với 0 (mod 5)

Vậy P chia hết cho 5 

28 tháng 2 2016

P chia hết cho 5

27 tháng 3 2018

Ta có : 

\(A=3^{2008}-3^{2007}+3^{2006}-...+3^2-3+1\)

\(3A=3^{2009}-3^{2008}+3^{2007}-...+3^3-3^2+3\)

\(3A+A=\left(3^{2009}-3^{2008}+3^{2007}-...+3^3-3^2+3\right)+\left(3^{2008}-3^{2007}+3^{2006}-...+3^2-3+1\right)\)

\(4A=3^{2009}+1\)

\(A=\frac{3^{2009}+1}{4}>\frac{1}{4}\)

Vậy \(A>\frac{1}{4}\)

Chúc bạn học tốt ~ 

27 tháng 3 2018

Ta có \(3A=3^{2009}-3^{2008}+...-3^2+3\)

           \(A=3^{2008}-3^{2007}+...-3+1\)

=> \(4A=3A+A=3^{2009}+1\)

=> \(A=\frac{3^{2009}+1}{4}\)\(\frac{3^{2009}}{4}+\frac{1}{4}>\frac{1}{4}\)

24 tháng 10 2015

\(B=5^{2008}+5^{2007}+5^{2006}=5^{2006}.\left(5^2+5+1\right)=5^{2006}.31\)chia hết cho 31

=> B chia hết cho 31 => đpcm.

23 tháng 12 2015

H = 0,5 (20072005 - 20032003)

H = (20072005 - 20032003) / 2

20072005 tận cùng là số lẻ

20032003 tận cùng cũng là số lẻ

lẻ trừ lẻ bằng chẵn

Số chẵn sẽ chua hết cho 2

Suy ra H chua hết cho 2

Và H là số nguyên