Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Theo đề bài ta có:\(A\left(x\right)=ax^2+x-3\) có ngiệm là \(\dfrac{1}{2}\)
=>\(A\left(\dfrac{1}{2}\right)=a\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a-\dfrac{5}{2}=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{5}{2}\)
\(\Leftrightarrow a=\dfrac{5}{2}:\dfrac{1}{4}=10\)
vậy hệ số a=10
b)Theo đề bài ta có: \(Q\left(x\right)=mx^2-2mx-3\) có nghiệm x=-1
=>\(Q\left(-1\right)=m\left(-1\right)^2-2m\left(-1\right)-3=0\)
\(\Leftrightarrow m+2m-3=0\)
\(\Leftrightarrow3m=3\Leftrightarrow m=1\)
Vậy hệ số m của đa thức là 1
Dạng 1:
a) $4x+9=4x+\frac{9}{4}.4=4(x+\frac{9}{4}\Rightarrow$ Nghiệm là $-\frac{9}{4}$
b) $-5x+6=-5x+(-5).(-\frac{6}{5})=-5(x-\frac{6}{5})\Rightarrow$ Nghiệm là $\frac{6}{5}$
c) $7-2x=-2x+7=-2x+(-2).(-\frac{7}{2})=-2(x-\frac{7}{2})\Rightarrow$ Nghiệm là $\frac{7}{2}$
d) $2x+5=2x+2.\frac{5}{2}=2.(x+\frac{5}{2})\Rightarrow$ Nghiệm là $-\frac{5}{2}$
e) $2x+6=2x+2.3=2(x+3)\Rightarrow$ Nghiệm là -3
g) $3x-\frac{1}{4}=3x-3.(\frac{1}{12})=3(x-\frac{1}{12})\Rightarrow$ Nghiệm là $\frac{1}{12}$
h) $3x-9=3x-3.3=3(x-3)\Rightarrow$ Nghiệm là 3
k) $-3x-\frac{1}{2}=-3x-3.(\frac{1}{6})=-3(x+\frac{1}{6})\Rightarrow$ Nghiệm là $-\frac{1}{6}$
m) $-17x-34=-17x-17.2=-17(x+2)\Rightarrow$ Nghiệm là -2
n) $2x-1=2x+2.(-\frac{1}{2})=3(x-\frac{1}{2})\Rightarrow$ Nghiệm là $\frac{1}{2}$
q) $5-3x=-3x+5=-3x+(-3).(-\frac{5}{3})=-3(x-\frac{5}{3})\Rightarrow$ Nghiệm là $\frac{5}{3}$
p) $3x-6=3x+3.(-2)=3(x-2)\Rightarrow$ Nghiệm là 2
a: \(=\dfrac{1}{3}\cdot24\cdot4\cdot x^2\cdot xy\cdot xy=32x^4y^2\)
Phần biến là \(x^4;y^2\)
Bậc là 6
Hệ số là 32
b: \(=xy^2\cdot\left(-2\right)xy^3=-2x^2y^5\)
Phần biến là \(x^2;y^5\)
Bậc là 7
Hệ số là -2
c: \(=\dfrac{1}{5}x^2y^3z\cdot\dfrac{1}{8}x^3y^3z^3=\dfrac{1}{40}x^5y^6z^4\)
PHần biến là \(x^5;y^6;z^4\)
Bậc là 15
Hệ só là 1/40
d: \(=\dfrac{1}{3}\cdot ab\cdot xy\cdot a^2\cdot x^2y^4=\dfrac{1}{3}a^3b\cdot x^3y^5\)
Phần biến là \(x^3y^5\)
Hệ số là \(\dfrac{1}{3}a^3b\)
Bậc là 8
1) a)
=\(\left(4-1+8\right)x^2=11x^2\)
b) =\(\left(\dfrac{1}{2}-\dfrac{3}{4}+1\right)x^2y^2=\dfrac{3}{4}x^2y^2\)
c) =(3-7+4-6)y=5y 2) a) ...=\(\left[\left(\dfrac{-2}{3}y^3\right)-\dfrac{1}{2}y^3\right]+3y^2-y^2\\ =\left[\left(\dfrac{-2}{3}-\dfrac{1}{2}\right)y^3\right]+\left(3-1\right)y^2=\dfrac{-7}{6}y^3+2y^2\) b) ...=\(\left(5x^3-x^3\right)-\left(3x^2+4x^2\right)+\left(x-x\right)=4x^3-7x^2\) 3) a)A=\(\left(5.\dfrac{1}{2}\right).\left(x.x^2.x\right)\left(y^2.y^2\right)=\dfrac{5}{2}x^4y^4\) b)Vậy Đơn thức A có bậc 8; hệ số là \(\dfrac{5}{2}\); phần biến là \(x^4y^4\) c)Khi x=1;y=-1 thì A=\(\dfrac{5}{2}.1^4.\left(-1\right)^4=\dfrac{5}{2}\)
a, \(\dfrac{5}{6}-\left|2-x\right|=\dfrac{1}{3}\Rightarrow\dfrac{5}{6}-\dfrac{1}{3}=\left|2-x\right|\)
<=> \(\dfrac{1}{2}=\left|2-x\right|\) \(\Leftrightarrow\left[{}\begin{matrix}2-x=\dfrac{1}{2}\\2-x=\dfrac{-1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
==================
Mấy câu sau tương tự thôi
a)\(\dfrac{3}{2}hay\dfrac{-3}{2}\)
b)\(\dfrac{13}{20}hay\dfrac{-13}{20}\)
c)\(\dfrac{11}{6}hay\dfrac{-11}{6}\)
d)\(\dfrac{4}{3}hay\dfrac{-4}{3}\)
e)\(\dfrac{1}{5}hay\dfrac{-1}{5}\)
Đây là câu trả lời của mình
Hay có nghĩa là hoặc
Lời giải:
a)
\(A=-3x^5-\frac{1}{2}x^3y-\frac{3}{4}xy^2+3x^5+2\)
\(=(-3x^5+3x^5)-\frac{1}{2}x^3y-\frac{3}{4}xy^2+2\)
\(=-\frac{1}{2}x^3y-\frac{3}{4}xy^2+2\)
b) Ký hiệu deg được hiểu là ký hiệu bậc của đa/đơn thức
\(deg(x^3y)=3+1=4\)
\(deg(xy^2)=1+2=3\)
Mà $4>3$ do đó \(deg(Q)=deg(\frac{-1}{2}x^3y-\frac{3}{4}xy^2+2)=4\)
Bài 1:
Ta có:
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)
\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{100}{100!}-\dfrac{1}{100!}\)
\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}\)
Mà \(1-\dfrac{1}{100!}< 1\)
Nên \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) (Đpcm)
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)
Thay vào biểu thức ta có:
\(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
\(=\dfrac{a+b}{a}.\dfrac{c+a}{c}.\dfrac{b+c}{b}\)
\(=\dfrac{2a.2b.2c}{abc}\)
\(=\dfrac{8\left(abc\right)}{abc}=8\)
Vậy \(B=8\)
bài 3:
Ta có a+2b+ac= -1/2
<=> 1/2+a+2b+ac=0
chia 2 vế cho 4 ta được: \(\frac{ }{12}\)(1/2)^3+a(1/2)^3+b(1/2)+c=0
<=> 1/8+a/4+b/2+c=0
<=> P(1/2)=0
Vậy x=1/2 là một nghiệm của đa thức\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)