K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

A=\(\left(1-\sqrt{7}\right)x\frac{\sqrt{7}\left(1+\sqrt{7}\right)}{2\sqrt{7}}\)

=\(\frac{\left(1-7\right)\sqrt{7}}{2\sqrt{7}}\)

=-3

P=\(\frac{1+\sqrt{x}-1+\sqrt{x}}{\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)}.\frac{-\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)}{\sqrt{x}}\)(ĐKXĐ:X>0,X KHÁC 1)

=\(\frac{-2\sqrt{x}}{\sqrt{x}}\)

=-2

28 tháng 8 2017

1. 

= -(13 + 3 căn7 ) / 2  +  -(7 + 3 căn7 ) / 2 

=  -7 + 3 căn7

15 tháng 6 2017

Bài rút gọn 

\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)

\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)

Bài gpt:

\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)

Đk:\(-1\le x\le3\)

\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)

Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm

Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

a).  \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)

\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\) 

ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC

17 tháng 8 2016

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)

NM
9 tháng 9 2021

\(\frac{3}{\sqrt{7}-1}+\frac{3}{\sqrt{7}+1}=\frac{3\left[\sqrt{7}+1+\sqrt{7}-1\right]}{\left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right)}=\frac{6\sqrt{7}}{6}=\sqrt{7}\)

\(\frac{3}{\sqrt{X}-1}-\frac{2}{\sqrt{X}+1}+\frac{X-7}{X-1}=\frac{3\left(\sqrt{X}+1\right)-2\left(\sqrt{X}-1\right)+X-7}{\left(\sqrt{X}+1\right)\left(\sqrt{X}-1\right)}=\frac{X+\sqrt{X}-2}{\left(\sqrt{X}+1\right)\left(\sqrt{X}-1\right)}=\frac{\sqrt{X}+2}{\sqrt{X}+1}\)

9 tháng 9 2021

TÍNH GIÁ TRỊ BIỂU THỨC:

\(\frac{3}{\sqrt{7}-1}\) + \(\frac{3}{\sqrt{7}+1}\)\(\frac{3\left(\sqrt{7}+1\right)+3\left(\sqrt{7}-1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}\)\(\frac{3\sqrt{7}+3+3\sqrt{7}-3}{6}\)=\(\frac{6\sqrt{7}}{6}\)=\(\sqrt{7}\)

RÚT GỌN BIỂU THỨC:

\(\frac{3}{\sqrt{X}-1}\)-\(\frac{2}{\sqrt{X}+1}\)+\(\frac{X-7}{X-1}\)

\(\frac{3\left(\sqrt{X}+1\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)-\(\frac{2\left(\sqrt{X}-1\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)+\(\frac{X-7}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{3\sqrt{X}+3-2\sqrt{X}+2+X-7}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{X+\sqrt{X}-2}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{\left(\sqrt{X}+1\right)\left(\sqrt{X}-2\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{\sqrt{X}-2}{\sqrt{X}-1}\)

CHÚC EM HỌC TỐT!

15 tháng 9 2017

a) A = \(\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)

A = \(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)

A = \(\left(\frac{2}{1-x}\right):\left(\frac{2\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)

A =  \(\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)

A = \(\frac{2}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)

A = \(\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)

A =  \(\frac{1-\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\)

A = \(\frac{1-\sqrt{x}+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\)

A = \(\frac{1}{\sqrt{x}-x}\)

b)  Ta tính \(\sqrt{x}=\sqrt{7+4\sqrt{3}}=2+\sqrt{3}\) .

Sau đó thế vào A, ta có \(A=\frac{1}{\sqrt{x}-x}=\frac{1}{2+\sqrt{3}-7-4\sqrt{3}}=\frac{1}{-5-3\sqrt{3}}=-\frac{1}{5+3\sqrt{3}}\)