Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left(2-3x\right)\left(x^2+2x+3\right)=0.\)
\(\left(2-3x\right)=0\)
\(\left(x^2+2x+3\right)=0\)
\(TH1:2-3x=0\Leftrightarrow x=\frac{-2}{-3}\)
\(TH2:x^2+2x+3=0\Leftrightarrow\left(x^2+2x+1\right)+3\Leftrightarrow\left(x+1\right)^2+3>0\)
b) \(3x-3x=5+2\) ( vô nghiệm)
c) vô nghiệm
d-\(x^2-5x-6=0\Leftrightarrow\left(x^2-x\right)+\left(6x-6\right)\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
vậy ...
x=1
x=-6
E) \(\frac{2\left(x-3\right)^2}{3}=\frac{3x^2}{2}\) quy đồng khử mẫu ta được
\(4\left(x-3\right)^2-9x^2=0\Leftrightarrow4\left(x-3\right)^2-\frac{4.1.9x^2}{4}\) rút 4 ta được
\(4\left\{\left(x-3\right)^2-\frac{9x^2}{4}\right\}=0\Leftrightarrow4\left\{\left(x-3\right)^2-\left(\frac{3}{2}x\right)^2\right\}\Leftrightarrow4\left(x-3+\frac{3}{2}x\right)\left(x-3-\frac{3}{2}x\right)=0\) ( hằng đẳng thức số 3 )
tích = 0
vậy ....
F) trị tuyệt đối + bình phương của 1 số thực luôn lớn hơn hoặc = 0( định lí Pain)
phá trị tuyệt đối ta được
\(\left(x+5\right)^2-\left(3x-2\right)^2=0\)
\(\left(x+5-3x-2\right)\left(x+5+3x-2\right)=0\) ( hẳng đẳng thức số 3 )
tích = 0 suy ra 2 TH vậy .....
g) câu G bạn lên coccoc math bạn ghi là nó ra kết quả phân tích thành nhân tử chứ làm = tay vừa dài vừa hại não :)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24=0\)
\(x\left(x-5\right)x\left(x^2-5x+10\right)=0\) ( coccoc math)
\(\left(x^2-5x+10\right)=0\Leftrightarrow\left(x^2-\frac{2x.5}{2}+\left(\frac{5}{2}\right)^2\right)+10-\frac{25}{4}=0\) ( 10-25/4) = 15/4
\(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\) ( vô nghiệm)
vậy....
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
dk ton tai P(x) la \(x\ne\left\{-4,0,1,2\right\}\)
\(p\left(x\right)=\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)\left(x+4\right)}\)