Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vì m,n nguyên dương. Mà vế phải là số dương.Nên m > n
Đặt \(m=n+k\left(k>0,k\inℤ\right)\)
Ta có: \(2^{n+k}-2^n=2^8\Leftrightarrow2^n\left(2^k-1\right)=2^8\)
\(\Rightarrow2^k-1\inƯ\left(2^8\right)\)
Do \(2^k-1\)lẻ.Mà ước của 28 chỉ có 1 là số lẻ.
Suy ra \(2^k-1=1\Leftrightarrow2^k=2\Leftrightarrow k=1\Leftrightarrow n=8\)
Suy ra \(m=k+n=1+8=9\)
Vậy n = 8 ; m = 9
a)2^m-2^m*2^n+2^n-1=-1
(2^m-1)(2^n-1)=1
do m,n là số tự nhiên nên
2^m-1 và 2^n-1 là ước dương của 1
hay đồng thời xảy ra 2^m-1=1 và 2^n-1=1 suy ra m=n=1
2m+2n=2m+n.
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
chúc bạn hok tốt
Ta có : 2m - 2n = 256
Đặt m = n + k (Vì 2m > 2n) (k > 0 ; k \(\inℕ\))
Khi đó 2n.2k - 2n = 256
=> 2n(2k - 1) = 256
Vì k> 0 => 2k > 0 => 2k - 1 > 0 <=> k > 1
Mà 2k chẵn với k > 0
=> 2k - 1 lẻ với k > 1 (1)
Vì 2n(2k - 1) chẵn => 2k - 1 chẵn hoặc 2k - 1 = 1
mà xét vớ (1) ta chỉ nhận được 2k - 1 = 1
=> k = 1
=> n = 9
=> m = 10
Vậy n = 9 ; m = 10
\(2^m-2^n=256=2^8\)---> Chia 2 vế cho 2n
\(\Leftrightarrow2^{m-n}-1=2^{8-n}\)
\(\Leftrightarrow2^{m-n}-2^{8-n}=1\)
\(\Leftrightarrow2^{8-n}\left(2^{m-8}-1\right)=1\)---> Vì các lũy thừa với số mũ tự nhiên của 2 không thể bé hơn 1 nên pt chỉ có nghiệm khi:
\(\hept{\begin{cases}2^{8-n}=1\\2^{m-8}-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}2^{8-n}=2^0\\2^{m-8}=2^1\end{cases}\Leftrightarrow}\hept{\begin{cases}8-n=0\\m-8=1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=8\\m=9\end{cases}}}\)
Câu trả lời hay nhất: Cách 1:
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
Cách 2:
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2.
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b.
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2.
Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.
:D
Có 2m -2n=256=28
=> 2n (2m-n-1)=28.
=>2m-n-1=28-n
=>2m-n = 28-n +1
TH1: 8-n = 0 => n = 8 => 2m-n=2 => m-n =1 => m =9
TH2: 8-n <0 => vô lý do 28-n +1 sẽ là phân số trong khi 2m-n không là phân số
TH3: 8-n>0 => 28-n +1 lẻ trong khi 2m-n chẵn => vô lý
=> m =9, n=8 => m+n=17
Do vế phải dương nên vế trái dương \(\Rightarrow m>n\)
Pt tương đương: \(2^n\left(2^{m-n}-1\right)=256\)
Do \(m>n\Rightarrow m-n\ge1\Rightarrow2^{m-n}\) chẵn \(\Rightarrow2^{m-n}-1\) lẻ
Mà 256 có duy nhất 1 ước lẻ là 1
\(\Rightarrow2^{m-n}-1=1\Rightarrow m-n=1\)
\(\Rightarrow\left\{{}\begin{matrix}m-n=1\\2^n.1=256=2^8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=8\\m=9\end{matrix}\right.\)