Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 4 số tự nhiên liên tiếp là a, a+1,a+2,a+3
tổng của 3 tự nhien liên tiếp là: a+a+1+a+2=3a+3=3.(a+1) chia hết cho 3
tổng của 4 số tự nhiên liên tiếp là: a+a+1+a+2+a+3=4a+6=4.(a+1)+2 ko chia hết cho 4
thanks bn những bn có thể tra lời giúp mình hết có được ko???
Làm từng phần thôi dài quá
Bài 1 :
Gọi số tự nhiên đầu tiên tiên là a
=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5
= 6a + 15
mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết
Bài 2 :
Ta thấy : 3^2018 có tận cùng là 1 số lẻ
11^2017 cũng có tận cùng là một số lẻ
=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2
bài 1 ko
bài 2
ta có \(\hept{\begin{cases}3^{2018}=3^{2016}.3^2=\left(3^4\right)^{504}.9=81^{504}.9=\cdot\cdot\cdot1.9=\cdot\cdot\cdot9\\11^{2017}=\cdot\cdot\cdot1\end{cases}}\)
\(\Rightarrow3^{2018}-11^{2017}=\cdot\cdot\cdot9-\cdot\cdot\cdot1=\cdot\cdot\cdot8⋮2\left(ĐPCM\right)\)
bài 3
a)
\(n+4⋮n\Rightarrow4⋮n\Rightarrow n\inƯ\left(\text{4}\right)\)
\(\Rightarrow n\in\left\{1;2;4;-1;-2;-4\right\}\)
b)
\(3n+7⋮n\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\)
\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)
mấy cái này chứng minh mần j nhỉ
cái này là vốn có để chưngs minh rồi
nếu chứng mnh thì cũng bằng thừa
a, Gọi 2 số tự nhiên liến tiếp là : a;a+1 (a thuộc N)
1 số khi chia cho 2 có dạng : 2k;2k+1 (k thuộc N)
+) Nếu a=2k => a chia hết cho 2 (1)
+) Nếu a=2k+1 => a+1=2k+2 chia hết cho 2 (2)
Từ (1) và (2)
=> Trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2.
Vậy trong 2 số tự nhiên liên tiếp, có 1 số chia hết cho 2.
b, Tương tự phần a
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
Bài 1:
Tổng của 6 STN liên tiếp coi là:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15⋮̸6\)
KL: Tổng của 6 STN liên tiếp không chia hết cho 6.
Bài 2:
\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )
\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)
KL; đpcm.
Bài 3 :
a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)
KL: ...
b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)
KL: ...
câu trả lời là
88
bạn nhé
chúc bn học giỏi
Chắc là chia hết cho 9
trình bày nha ra