Xác định các hệ số a,b,c Tính biệt thức 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2023

a) 3x² - 4x + 1 = 0

a = 3; b = -4; c = 1

∆ = b² - 4ac = (-4)² - 4.3.1 = 4 > 0

Phương trình có hai nghiệm phân biệt:

x₁ = (-b + √∆)/2a = [-(-4) + 2]/(2.3) = 1

x₂ = (-b - √∆)/2a = [-(-4) - 2]/(2.3) = 1/3

Vậy S = {1/3; 1}

b) -4x² + 4x + 1 = 0

a = -4; b = 4; c = 1

∆ = b² - 4ac = 4² - 4.(-4).1 = 32 > 0

Phương trình có hai nghiệm phân biệt:

x₁ = (-b + √∆)/2a = (-4 + 4√2)/[2.(-4)] = (1 - √2)/2

x₂ = (-b - √∆)/2a = (-4 - 4√2)/[2.(-4)] = (1 + √2)/2

Vậy S = {(1 - √2)/2; (1 + √2)/2}

d) x² - 8x + 2 = 0

a = 1; b = -√8; c = 2

∆ = b² - 4ac = 8 - 8 = 0

Phương trình có nghiệm kép:

x₁ = x₂ = -b/2a = √8/2 = √2

Vậy S = {√2}

e) x² - 6x + 5 = 0

a = 1; b = -6; c = 5

∆ = b² - 4ac = 36 - 20 = 16 > 0

Phương trình có hai nghiệm phân biệt:

x₁ = (-b + √∆)/2a = (6 + 4)/2 = 5

x₂ = (-b - √∆)/2a = (6 - 4)/2 = 1

Vậy S = {1; 5}

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Bạn nên viết đề bằng công thức toán để mọi người dễ đọc hơn nhé (nhấn vào biểu tượng $\sum$ góc trái khung soạn thảo)

12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

8 tháng 10 2021

a) 9x2 _  6x + 1 =0              b) x2 -4x +4=25                 c) (5 - 2x)2 -16 =0

<=>(3x-1)2 = 0                      <=> x2 - 4x - 21 = 0           <=>(5-2x)2 - 42 =0

<=>x=1/3                               <=> ( x - 7 ).(x + 3 )=0           <=>  (5-2x-4).(5-2x+4) = o

                                               <=> x=7 hoặc x= -3              <=>  (1-2x).(9-2x)=0

                                                                                                <=> 1 - 2x = 0  hoặc 9 - 2x =0

                                                                                                      <=> x = 1/2 hoặc x = 9/2

10 tháng 3 2016

GTNN cua bieu thuc A la A(min) = 3

11 tháng 10 2015

1. \(A=\frac{1}{\left(\sqrt{x}+\frac{2016}{\sqrt{x}}\right)^2}\)

Áp dụng bất đẳng thức Côsi cho mẫu số.

2. Thế y theo x từ pt đầu xuống pt sau rồi quy đồng, giải pt bậc 4.

C2: \(pt\left(1\right)-2pt\left(2\right)\Leftrightarrow\left(x-y+5\right)\left(x-y-13\right)=0\)

3. a.

\(\text{ĐK: }2x^2-x=x\left(2x-1\right)\ge0\Leftrightarrow x\le0\text{ hoặc }x\ge\frac{1}{2}\)

Để pt có nghiệm thì \(2x-x^2\ge0\Leftrightarrow x\left(2-x\right)\ge0\Leftrightarrow0\le x\le2\)

Vậy \(\frac{1}{2}\le x\le2\)

\(pt\Leftrightarrow\sqrt{x\left(2x-1\right)}=x\left(2-x\right)\Leftrightarrow\sqrt{2x-1}=\sqrt{x}\left(2-x\right)\text{ (do }x>0\text{)}\)

\(\Leftrightarrow2x-1=x\left(2-x\right)^2\Leftrightarrow\left(x-1\right)\left(x^2-3x-1\right)=0\)

b.

\(\text{ĐK: }......\)

\(\sqrt{2x+1}=a;\text{ }\sqrt[3]{4-3x}=b\text{ }\left(a\ge0\right)\)

\(pt\Leftrightarrow3a-2b=13\Leftrightarrow a=\frac{2b+13}{3}\)

Lại có: \(3a^2+2b^3=3\left(2x+1\right)+2\left(4-3x\right)=11\)

Thay vào: \(3\left(\frac{2b+13}{3}\right)^2+2b^3=11\Leftrightarrow6b^3+4b^2+52b+136=0\)

\(\Leftrightarrow\left(b+2\right)\left(6b^2-8b+68\right)=0\)