Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0
nên số mũ chắc chắn bằng 0
mà số nào mũ 0 cũng bằng 1 nên A=1
5/ vì |2/3x-1/6|> hoặc = 0
nên A nhỏ nhất khi |2/3x-6|=0
=>A=-1/3
6/ =>14x=10y=>x=10/14y
23x:2y=23x-y=256=28
=>3x-y=8
=>3.10/4y-y=8
=>6,5y=8
=>y=16/13
=>x=10/14y=10/14.16/13=80/91
8/106-57=56.26-56.5=56(26-5)=59.56
có chứa thừa số 59 nên chia hết 59
4/ tính x
sau đó thế vào tinh y,z
a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)
\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)
Từ (1) và (2) \(\Rightarrow A< B\)
Vậy \(A< B.\)
b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)
\(A=\left(0,1\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)
\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
d) \(A=102^7=102^6.102\)(1)
\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)
\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)
Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)
Vậy \(A>B.\)
f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)
\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
a, ta có A=2^24=64^4
B=3^16=81^4
Vì 64^4<81^4
Vậy 2^24<3^36
b, ta có A=0,1^15
B=0,3^30=0,09^15
Vì 0,1^15< 0,09^15
Vậy 0,1^15<0,3^30
\(\left(\frac{1}{2}\right)^5\times x=\left(\frac{1}{2}\right)^7\)
\(x=\left(\frac{1}{2}\right)^7\div\left(\frac{1}{2}\right)^5\)
\(x=\left(\frac{1}{2}\right)^{7-5}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\) .
\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{9}{21}\right)^2\)
\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{3}{7}\right)^4\)
\(x=\left(\frac{3}{7}\right)^4\div\left(\frac{3}{7}\right)^2\)
\(x=\left(\frac{3}{7}\right)^{4-2}=\left(\frac{3}{7}\right)^2=\frac{9}{49}\)
\(2^x=2\Rightarrow x=1\)
\(3^x=3^4\Rightarrow x=4\)
\(7^x=7^7\Rightarrow x=7\)
\(\left(-3\right)^x=\left(-3\right)^5\Rightarrow x=5\)
\(\left(-5\right)^x=\left(-5\right)^4\Rightarrow x=4\)
\(2^x=4\Leftrightarrow2^x=2^2\Rightarrow x=2\)
\(2^x=8\Leftrightarrow2^x=2^3\Rightarrow x=3\)
\(2^x=16\Leftrightarrow2^x=2^4\Rightarrow x=4\)
\(3^{x+1}=3^2\Leftrightarrow x+1=2\Leftrightarrow x=2-1\Rightarrow x=1\)
\(5^{x-1}=5\Leftrightarrow x-1=1\Leftrightarrow x=1+1\Rightarrow x=2\)
\(6^{x+4}=6^{10}\Leftrightarrow x+4=10\Leftrightarrow x=10-4\Rightarrow x=6\)
\(5^{2x-7}=5^{11}\Leftrightarrow2x-7=11\Leftrightarrow2x=11+7\Leftrightarrow2x=18\Leftrightarrow x=18\div2\Rightarrow x=9\)
\(\left(-2\right)^{4x+2}=64\)
\(2^{-4x+2}=2^6\Leftrightarrow-4x+2=6\Leftrightarrow-4x=6-2\Leftrightarrow-4x=4\Leftrightarrow x=4\div\left(-4\right)\Rightarrow x=-1\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\Rightarrow x=5\)
\(\left(\frac{5}{6}\right)^{2x}=\left(\frac{5}{6}\right)^5\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
\(\left(\frac{3}{4}\right)^{2x-1}=\left(\frac{3}{4}\right)^{5x-4}\Rightarrow2x-1=5x-4\)
\(2x-5x=-4+1\)
\(-3x=-3\Rightarrow x=1\)
\(\left(\frac{-1}{10}\right)^x=\frac{1}{100}\)
\(\left(\frac{1}{10}\right)^{-x}=\left(\frac{1}{10}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)
\(\left(\frac{-3}{2}\right)^x=\frac{9}{4}\)
\(\left(\frac{3}{2}\right)^{-x}=\left(\frac{3}{2}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)
\(\left(\frac{-3}{5}\right)^{2x}=\frac{9}{25}\)
\(\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^2\Rightarrow-2x=2\Rightarrow x=-1\)
\(\left(\frac{-2}{3}\right)^x=\frac{-8}{27}\)
\(\left(\frac{-2}{3}\right)^x=\left(\frac{-2}{3}\right)^3\Rightarrow x=3\).
hehe. đánh tới què tay, hoa mắt lun r nekkk!!
Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7 . (-1)9 . (-1)11 . (-1)13
= (-1)(-1).(-1).(-1).(-1).(-1)
= (-1)6
= 1
b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)
= 0
Bài 2 :
Đặt A = 12 + 22 + 32 + ... + 102 = 385
=> 22(12 + 22 + 32 + ... + 102) = 22.385
=> 22 + 42 + 62 + ..... + 202 = 4.385
=> 22 + 42 + 62 + ..... + 202 = 1540
Vậy 22 + 42 + 62 + ..... + 202 = 1540
bài 3:
a) 2S=2+22+23+24+...+251
2S-S=251-1
mà 251-1<251
Suy ra:s<251
\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
a) \(10^{20}\) và \(9^{10}\)
Vì 10 > 9 ; 20 > 10
nên \(10^{20}>9^{10}\)
Vậy \(10^{20}>9^{10}\)
b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)
Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
Vì 243 > 125 nên \(125^{10}< 243^{10}\)
Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)
c) \(64^8\) và \(16^{12}\)
Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
Vậy \(64^8=16^{12}\left(=4^{24}\right)\)
d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)
Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)
\(A=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(5.A=5.(1+5+5^2+5^3+...+5^{2008}+5^{2009}) \)
\(5.A=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
\(5.A-A=4.A=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+5^3+...+5^{2008}+5^{2009})\)
\(4.A=5^{2010}-1\)
\(A=\frac{5^{2010}-1}{4}\)
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)
\(2.B=2.(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)
\(2.B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)
\(2.B+B=3.B=(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3)+(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)
\(3.B=2^{101}+2^2 \)
\(B=\frac{2^{101}+2^{2}}{3}\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-10^3)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-1000)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...0...(1000-50^3)\)
\(C=0\)
Tick cho mình nha!!!
Chúc bạn học tốt!
b)Ta có:
\(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)
c)Ta có:
\(0,3^{20}=\left(0,3^2\right)^{10}=0,09^{10}< 0,1^{10}\)
d)Ta có:
\(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2}\right)^{40}\)
\(\left(\frac{1}{8}\right)^{13}=\left(\frac{1}{2}\right)^{39}\)
Vì \(\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{39}\)
nên \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{8}\right)^{13}\)
e)Ta có:
\(3^{21}=3^{20}.3=9^{10}.3\)
\(2^{31}=2^{30}.2=8^{10}.2\)
Vì \(9^{10}.3>8^{10}.2\)
\(\Rightarrow3^{21}>2^{31}\)
a) 102 và 90^ 10
Ta có : 9010 = (905)2
Vì 905 > 10 => 90^10 > 10^2
b) (-5)^30 và (-3)^50
Ta có : (-5)^30= (-5^3)^10= -125^10
(-3)^50= (-3^5)^ 10= -243^10
Vì -125>-243 => (-3)^50 < (-5)^30
c) (-1)^10/16 và 1^50/2
Ta có: (-1)^10/16 = 1/16 = 1/2^4= 2(-4)
1^50/2 = 1/2= 2(-1)
Vì 2(-1) < 2(-4) => 1^50/2 < (-1)^10/16