K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

Theo đề, ta có:

a:b=2,24:3,36=a/2,24=b/3,36 và a2:b = 2

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a/2,24=b/3,36=a2:b/(2,24)2:3,36=2/112/75

Từ a/2,24=2/112/75 => a=3

     b/3,36= 2/112/75 => b=4,5

Vậy a=3, b=4,5

k nha!

16 tháng 12 2016

Ta có:a:b=2,24:3,36\(\Rightarrow\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{2}=\frac{b}{3}\)

Đặt \(\frac{a}{2}=\frac{b}{3}=k\Rightarrow a=2k,b=3k\)

Mà a2:b=2

Hay (2k)2:3k=2

4k2:3k=2

\(\frac{4}{3}k=2\)

\(k=\frac{3}{2}\)

\(\Rightarrow a=\frac{3}{2}\cdot2=3,b=\frac{3}{2}\cdot3=4,5\)

Vậy cặp giá trị (a,b) là (3;4,5)

11 tháng 3 2017

a = 3 ; b = 4,5

tick nhahihi

26 tháng 12 2016

b^2=ac

b^2+2017bc=ac+2017bc

b(b+2017c)=c(a+2017b)

b/c=(a+2017b)/(b+2017c)

(b/c)^2=((a+2017b)/(b+2017c))^2

b^2/c^2=(a+2017b)^2/(b+2017c)^2

thế b^2=ac ta có 

ac/c^2=(a+2017b)^2/(b+2017c)^2 

a/c=(a+2017b)^2/(b+2017c)^2 

9 tháng 12 2015

1)Đặt n + 1945 = a² (1) (a là số tự nhiên) 
Đặt n + 2004 = b² (2) (b là số tự nhiên) 
Do (n + 2004) > (n + 1945) 
=> b² > a² 
=> b > a (Do a và b là số tự nhiên) 
Từ (1) và (2) => b² - a² = (n + 2004) - (n + 1945) 
<=> (b + a)(b - a) = n + 2004 - n - 1945 
<=> (b + a)(b - a) = 59 
=> (b + a) và (b - a) là ước tự nhiên của 59 
Ta có ước tự nhiên của 59 là các số: 1;59 (59 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có: 
b + a = 59 (3) và b - a = 1 (4) 
cộng vế với vế của (3) và (4) ta được: 
(b + a) + (b - a) = 59 + 1 
<=> b + a + b - a = 60 
<=> 2b = 60 
<=> b = 30 
Thay b = 30 vào (2) ta được 
n + 2004 = 30² 
<=> n + 2004 = 900 
<=> n = 900 - 2004 
<=> n = -1104 
Vậy với n = -1104 thì n+ 1945 và n + 2004 đều chính phương

9 tháng 12 2015

n =900 -2004 = - nhé

 

9 tháng 1 2019

Câu 1 .

\(\left|x^2+|x+1|\right|=x^2+5\)

\(Đkxđ:x^2+5\ge0\)

\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 ) 

\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha ) 

Vậy : x = 4 hoặc x = -6 

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1