Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
A: Hai phương trình này tương đương vì có chung tập nghiệm S={-3}
B: Hai phương trình này không tương đương vì hai phương trình này không có chung tập nghiệm
Câu 2:
\(\left(y-2\right)^2=y+4\)
\(\Leftrightarrow y^2-4y+4-y-4=0\)
\(\Leftrightarrow y\left(y-5\right)=0\)
=>y=0 hoặc y=5
Phương trình \(x^2+3x-10=0\)có tập nghiệm S = {-5;2}
Phương trình \(2x^2-3x=2\)có tập nghiệm \(S=\left\{2;-\frac{1}{2}\right\}\)
Vậy hai pt ko tương đương
\(x^2+3x-10=0\left(1\right);2x^2-3x=2\left(2\right)\)
Ta có pt (1) \(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
=> tập hợp nghiệm của pt (1) \(S=\left\{-5;2\right\}\)
Ta có pt (2) \(\Leftrightarrow2x^2-3x-2=0\)
\(\Leftrightarrow2x^2-4x+x-2=0\)
\(\Leftrightarrow2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-1}{2}\end{cases}}}\)
=> tập hợp nghiệm pt (2) \(S=\left\{2;\frac{-1}{2}\right\}\)
Ta thấy pt (1) và (2) đều có chung 1 nghiệm là x=2
Do đó pt (1) và (2) là 2 pt tương đương
a) Ta có: \(x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: \(S_1=\left\{3;-1\right\}\)(1)
Ta có: \(\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy: \(S_2=\left\{-3;-1\right\}\)(2)
Từ (1) và (2) suy ra \(S_1\ne S_2\)
hay Hai phương trình \(x^2-2x-3=0\) và \(\left(x+1\right)\left(x+3\right)=0\) không tương đương với nhau
1:
a: x^3+x^2-3x-3=0
=>x^2(x+1)-3(x+1)=0
=>(x+1)(x^2-3)=0
=>x=-1 hoặc x^2-3=0
=>\(S_1=\left\{-1;\sqrt{3};-\sqrt{3}\right\}\)
2x+3=1
=>2x=-2
=>x=-1
=>S2={-1}
=>Hai phương trình này không tương đương.
1: \(\dfrac{1}{\left|x+1\right|}+\dfrac{1}{x+2}=3\left(1\right)\)
TH1: x>-1
Pt sẽ là \(\dfrac{1}{x+1}+\dfrac{1}{x+2}=3\)
=>\(\dfrac{x+2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)
=>3(x+1)(x+2)=2x+3
=>3x^2+9x+6-2x-3=0
=>3x^2+7x+3=0
=>\(\left[{}\begin{matrix}x=\dfrac{-7-\sqrt{13}}{6}\left(loại\right)\\x=\dfrac{-7+\sqrt{13}}{6}\left(nhận\right)\end{matrix}\right.\)
TH2: x<-1
Pt sẽ là:
\(\dfrac{-1}{x+1}+\dfrac{1}{x+2}=3\)
=>\(\dfrac{-x-2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)
=>\(\dfrac{-1}{\left(x+1\right)\left(x+2\right)}=3\)
=>-1=3(x+1)(x+2)
=>3(x^2+3x+2)=-1
=>3x^2+9x+6+1=0
=>3x^2+9x+7=0
Δ=9^2-4*3*7
=81-84=-3<0
=>Phương trình vô nghiệm
Vậy: \(S_3=\left\{\dfrac{-7+\sqrt{13}}{6}\right\}\)
x^2+x=0
=>x(x+1)=0
=>x=0 hoặc x=-1
=>S4={0;-1}
=>S4<>S3
=>Hai phương trình này không tương đương
a) Phương trình bậc nhất một ẩn là phương trình 2x -8 = 0
b) Hai phương trình tương đương là hai phương trình có cùng tập nghiệm
Hai PT đã cho tương đương với nhau vì chúng có cùng tập nghiệm
S = {-2/3}
a) Phương trình bậc nhất một ẩn là phương trình :
2x - 8 = 0
b) Hai phương trình tương đương với nhau vì chúng có cùng tập nghiệm
Hai PT đã cho tương đương với nhau vì chúng có cùng tập nghiệm
S = ( -2 / 3 )
ai tk mk mk tk lại!!
(1)2x - 4 = 0
<=> x = 2
(2) 3x + 6=0
<=> x =- 2
<=> (1) khac (2)
<=> 2 pt ko tuong duong
\(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
\(3x+6=0\Leftrightarrow3x=-6\Leftrightarrow x=-2\)
Vì 2≠-2 nên 2 pt không tương đương