Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\frac{x-5}{4}-2x+1=\frac{x}{3}-\frac{2-x}{6}\\\Leftrightarrow \frac{3\left(x-5\right)}{12}-\frac{24}{12}x+\frac{12}{12}=\frac{4x}{12}-\frac{2\left(2-x\right)}{12}\\\Leftrightarrow 3\left(x-5\right)-24x+12=4x-2\left(2-x\right)\\\Leftrightarrow 3x-15-24x+12=4x-4+2x\\ \Leftrightarrow3x-15-24x+12-4x+4-2x=0\\ \Leftrightarrow-27x+1=0\\ \Leftrightarrow-27x=-1\\ \Leftrightarrow x=\frac{1}{27}\)
\(b.\left(2x-1\right)^2=\left(x-2\right)\left(2x-1\right)\\ \Leftrightarrow\left(2x-1\right)^2-\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left[\left(2x-1\right)-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(2x-1\right)\left(2x-1-x+2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-1\end{matrix}\right.\)
\(c.\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{-3}{25-x^2}\\\Leftrightarrow \frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{3}{x^2-25}\\\Leftrightarrow \frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{3}{\left(x-5\right)\left(x+5\right)}\\ \Leftrightarrow\frac{\left(x+5\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\frac{3}{\left(x-5\right)\left(x+5\right)}\\ \Leftrightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=3\\\Leftrightarrow x^2+5x+5x+25-\left(x^2-5x-5x+25\right)=3\\\Leftrightarrow x^2+5x+5x+25-x^2+5x+5x-25=3\\ \Leftrightarrow20x=3\\ \Leftrightarrow x=\frac{3}{20}\)
\(d.x^2-x-12=0\\\Leftrightarrow x^2-4x+3x-12=0\\\Leftrightarrow \left(x^2-4x\right)+\left(3x-12\right)=0\\ \Leftrightarrow x\left(x-4\right)+3\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
\(\dfrac{7}{x-1}=\dfrac{5}{x-4}\left(x\ne1;4\right)\)
\(\Leftrightarrow\dfrac{7\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}=\dfrac{5\left(x-1\right)}{\left(x-1\right)\left(x-4\right)}\)
\(\Leftrightarrow7x-28=5x-5\)
\(\Leftrightarrow7x-5x=-5+28\)
\(\Leftrightarrow2x=23\)
\(\Leftrightarrow x=\dfrac{23}{2}\left(Thoaman\right)\)
c: \(\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)
\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{x-25}{5\left(x-5\right)}\)
\(=\dfrac{15x+25+x^2-25x}{5x\left(x-5\right)}=\dfrac{x^2-10x+25}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\)
e: \(\dfrac{4x^2-3x+17}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{6}{1-x}\)
\(=\dfrac{4x^2-3x+17+\left(2x-1\right)\left(x-1\right)-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-2x^2-9x+11+2x^2-3x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-12}{x^2+x+1}\)
\(\dfrac{3}{x+5}=\dfrac{4}{x-2}\left(x\ne-5;x\ne2\right)\)
suy ra
`3(x-2)=4(x+5)`
`<=>3x-6=4x+20`
`<=> 3x-4x=20+6`
`<=> -x=26`
`<=> x=-26(tm)`
\(\dfrac{3}{x+5}=\dfrac{4}{x-2}\left(ĐKXĐ:x\ne-5;x\ne2\right)\)
\(\Leftrightarrow3\left(x-2\right)=4\left(x+5\right)\)
\(\Leftrightarrow3x-6=4x+20\)
\(\Leftrightarrow3x-4x=20+6\)
\(\Leftrightarrow-x=26\)
\(\Leftrightarrow x=-26\left(tm\right)\)
\(\left(\dfrac{x-2}{x+2}+\dfrac{6x-4}{x^2-4}\right):\dfrac{x+1}{x-2}\)
\(=\dfrac{x^2-4x+4+6x-4}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x-2}{x+1}\)
\(=\dfrac{x^2+2x}{x+2}\cdot\dfrac{1}{x+1}=\dfrac{x}{x+1}\)
\(\dfrac{2}{x+1}=\dfrac{4}{x-5}\\ ĐK:\left\{{}\begin{matrix}x\ne-1\\x\ne5\end{matrix}\right.\\ \Leftrightarrow2.\left(x-5\right)=4.\left(x+1\right)\\ \Leftrightarrow2x-10=4x+4\\ \Leftrightarrow2x-4x=4+10\\ \Leftrightarrow-2x=14\\ \Leftrightarrow x=-7\left(t/m\right)\)
\(\dfrac{2}{x+1}=\dfrac{4}{x-5}\left(x\ne-1;x\ne5\right)\)
suy ra: \(2\left(x-5\right)=4\left(x+1\right)\\ < =>2x-10=4x+4\\ < =>2x-4x=4+10\\< =>-2x=14\\ < =>x=-7\)