Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(x^2-2x+1\right)-3x\left(x-1\right)=0\)
\(\Leftrightarrow x^2-2x+1-3x^2+3x=0\)
\(\Leftrightarrow-2x^2+x+1=0\)
\(\Leftrightarrow-2x^2+2x-x+1=0\)
\(\Leftrightarrow-2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow-\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
Vậy \(x\in\left\{-\frac{1}{2};1\right\}\)
b. \(4\left(7x-3\right)-\left(7x^2-3x\right)=0\)
\(\Leftrightarrow4\left(7x-3\right)-x\left(7x-3\right)=0\)
\(\Leftrightarrow\left(4-x\right)\left(7x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\7x-3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{3}{7}\end{cases}}\)
Vậy \(x\in\left\{4;\frac{3}{7}\right\}\)
c.\(\left(5-x\right)\left(2+3x\right)=4-9x^2\)
\(\Leftrightarrow\left(5-x\right)\left(2+3x\right)=\left(2-3x\right)\left(2+3x\right)\)
\(\Leftrightarrow\left(2+3x\right)\left(5-x-2+3x\right)=0\)
\(\Leftrightarrow\left(2+3x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2+3x=0\\2x+3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{3}{2}\end{cases}}\)
Vậy \(x\in\left\{-\frac{2}{3};-\frac{3}{2}\right\}\)
d. \(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow7-4+4=-x+2x\)
\(\Leftrightarrow7=x\)
Vậy x = 7
e. \(\left(x-1\right)-\left(2x-1\right)=9\)
\(\Leftrightarrow x-1-2x+1=9\)
\(\Leftrightarrow-x=9\)
\(\Leftrightarrow x=-9\)
g. \(x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+1=0\end{cases}}\)Mà : \(x^2+1\ge1>0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy x = -1
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
x2-4x+4=4x2-12x+9
\(\Leftrightarrow\)3x2-8x+5=0
\(\Leftrightarrow\)3x2-3x-5x+5=0
\(\Leftrightarrow\)3x(x-1)-5(x-1)=0
\(\Leftrightarrow\)(x-1)(3x-5)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)
b,x2-2x-25=0
\(\Leftrightarrow\)(x-1)2-26=0
\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)
2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4
b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017
mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory
Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3
Bài 1:
a) \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)
\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)
VẬy tập nghiệm của phương trình là : S={11/3 ; 7}
b) Nếu x^2 -2x =25 thì lẻ lắm . Tớ nghĩ phải là : x^2 -2x = 24
Bài 2 :
a) \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\) hay \(A\ge4\)
Vậy GTNN của A là 4 khi x = 1 ( hay x-1 =0 )
b) \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)
Vì \(\left(2x-1\right)^2\ge0\) và \(\left(y+1\right)^2\ge0\) nên \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)
HAy \(B\ge-2017\) Vậy GTNN của B là -2017 khi x=1/2 và y = -1
Đặt (x+3)/(x-2)=a, (x-3)/(x+2)=b. Suy ra (x^2-9)/(x^2-4)=ab
Ta có pt: a^2+6b^2=7ab.
Giải ra tìm a, b, rồi tìm x.
Ta có : 6x2 - 11x + 3
= 6x2 - 2x - 9x + 3
= (6x2 - 2x) - (9x - 3)
= 2x(3x - 1) - 3(3x - 1)
= (2x - 3)(3x - 1)
a) \(\left(x+3\right)^3-x.\left(3x+1\right)^2+\left(2x+1\right).\left(4x^2-2x+1\right)-3x^2=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-x.\left(9x^2+6x+1\right)+8x^3+1-3x^2=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\)
\(\Leftrightarrow26x+28=54\Leftrightarrow26x=54-28\Leftrightarrow26x=26\Leftrightarrow x=1\)
Vậy nghiệm của phương trình là x=1
b) \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2+3x^2=-33\)
\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+6.\left(x^2+2x+1\right)+3x^2=-33\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\)
\(\Leftrightarrow27x+12x+6=-33\Leftrightarrow39x=-33-6\Leftrightarrow39x=-39\Leftrightarrow x=-1\)
Vậy nghiệm của phương trình là x = -1
Trần Anh: Hí hí =)) ÀI LỚP DIU CHIU CHIU CHÍU :3 CẢM ƠN PẠN NHIỀU NHÁ ;) ;) ;)
\(\left(1+1+1\right)!=6\)
\(2+2+2=6\)
\(\left(3+3-3\right)!=6\)
\(\sqrt{4}+\sqrt{4}+\sqrt{4}=6\)
\(5+5:5=6\)
\(7-7:7=6\)
\(\sqrt{8+\left(8:8\right)}!=6\)
\(\left(9-9\right)+\sqrt{9}!=6\)
\(\sqrt{10-\left(10:10\right)}!=6\)
Tất cả các phép đều sai
~~ tk mk nhé....~~
Ai tk mk mk tk lại ~~~
Kb lun nha....n_n
Tìm x:
1. \(25x^2-20x+4=0\)
⇔ \(\left(5x-2\right)^2=0\)
⇔ \(5x-2=0\)
⇔ \(5x=2\)
⇔ \(x=\dfrac{2}{5}\)
⇒ S = \(\left\{\dfrac{2}{5}\right\}\)
2. \(\left(2x-3\right)^2-\left(2x+1\right).\left(2x-1\right)=0\)
⇔ \(4x^2-12x+9-\left(4x^2-1\right)=0\)
⇔ \(4x^2-12x+9-4x^2+1=0\)
⇔ \(-12x+10=0\)
⇔ \(-12x=-10\)
⇔ \(x=\dfrac{5}{6}\)
⇒ S \(=\left\{\dfrac{5}{6}\right\}\)
3. \(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)-\left(\dfrac{1}{2}x-1\right)^2=0\)
⇔ \(\dfrac{1}{4}x^2-1-\left(\dfrac{1}{4}x^2-x+1\right)=0\)
⇔ \(\dfrac{1}{4}x^2-1-\dfrac{1}{4}x^2+x-1=0\)
⇔ \(-2+x=0\)
⇔ \(x=2\)
⇒ S \(=\left\{2\right\}\)
4. \(\left(2x-3\right)^2+\left(2x+5\right)^2=8\left(x+1\right)^2\)
⇔ \(4x^2-12x+9+4x^2+20x+25=8\left(x^2+2x+1\right)\)
⇔ \(8x^2+8x+34=8x^2+16x+8\)
⇔ \(8x+34=16x+8\)
⇔ \(8x-16x=8-34\)
⇔ \(-8x=-26\)
⇔ \(x=\dfrac{13}{4}\)
⇒ S \(=\left\{\dfrac{13}{4}\right\}\)
5.\(4x^2+12x-7=0\)
⇔ \(4x^2+14x-2x-7=0\)
⇔ \(2x\left(2x+7\right)-\left(2x+7\right)=0\)
⇔ \(\left(2x+7\right)\left(2x-1\right)=0\)
⇔ \(\left[{}\begin{matrix}2x+7=0\\2x-1=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
⇒ S \(=\left\{\dfrac{-7}{2};\dfrac{1}{2}\right\}\)
6. \(\dfrac{1}{4}x^2+\dfrac{2}{3}x-\dfrac{5}{9}=0\)
⇔ \(9x^2+24x-20=0\)
⇔ \(9x^2+30x-6x-20=0\)
⇔ \(3x\left(3x+10\right)-2\left(3x+10\right)=0\)
⇔ \(\left(3x+10\right)\left(3x-2\right)=0\)
⇔ \(\left[{}\begin{matrix}3x+10=0\\3x-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
⇒ S \(=\left\{\dfrac{-10}{3};\dfrac{2}{3}\right\}\)
7. \(24\dfrac{8}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)
⇔ \(\dfrac{224}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)
⇔ \(896-9x^2-12x=0\)
⇔ \(-896+9x^2+12x=0\)
⇔ \(9x^2+12x-896=0\)
⇔ \(9x^2-84x+96x-896=0\)
⇔ \(3x\left(3x-28\right)+32\left(3x-28\right)=0\)
⇔ \(\left(3x-28\right)\left(3x+32\right)=0\)
⇔ \(\left[{}\begin{matrix}3x-28=0\\3x+32=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=\dfrac{-32}{3}\end{matrix}\right.\)
⇒ S \(=\left\{\dfrac{-32}{3};\dfrac{28}{3}\right\}\)
kết quả là 54 lớp 4 cũng làm được
lớp 3 cũng làm đc mà