\(f\left(x\right)=\left\{{}\begin{matrix}\sqrt{x^2-4x}khix\ge4\\x+akhix< 4\end{matrix}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 2 2021

\(\lim\limits_{x\rightarrow4^+}f\left(x\right)=\lim\limits_{x\rightarrow4^+}\sqrt{x^2-4x}=0\)

\(\lim\limits_{x\rightarrow4^-}f\left(x\right)=\lim\limits_{x\rightarrow4^-}\left(x+a\right)=a+4\)

Hàm tồn tại giới hạn tại x=4 khi \(a+4=0\Leftrightarrow a=-4\)

NV
22 tháng 2 2020

\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+2}-\sqrt{3x-1}}{x-1}=+\infty\) (đây ko phải giới hạn dạng vô định \(\frac{0}{0}\))

\(\Rightarrow\) Không tồn tại m thỏa mãn

Có lẽ bạn ghi ko đúng đề, hàm bên trên phải là \(\frac{\sqrt{2x+2}-\sqrt{3x+1}}{x-1}\) thì giới hạn này mới là 1 số hữu hạn

22 tháng 2 2020

ừ đúng rồi là 3x+1 giúp mình câu này với

AH
Akai Haruma
Giáo viên
27 tháng 2 2022

Lời giải:
Để hàm số trên liên tục tại $x_0=0$ thì:
\(\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0-}f(x)=f(0)\)

\(\Leftrightarrow \lim\limits_{x\to 0+}(a+\frac{4-x}{x+2})=\lim\limits_{x\to 0-}(\frac{\sqrt{1-x}+\sqrt{1+x}}{x})=a+2\)

\(\Leftrightarrow a+2=\lim\limits_{x\to 0-}\frac{\sqrt{1-x}+\sqrt{1+x}}{x}\)

Mà \(\lim\limits_{x\to 0-}\frac{\sqrt{1-x}+\sqrt{1+x}}{x}=-\infty \) nên không tồn tại $a$ để hàm số liên tục tại $x_0=0$

NV
29 tháng 5 2020

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(m+\frac{1-x}{1+x}\right)=m+1\)

\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\frac{\left(\sqrt{1-x}-\sqrt{1+x}\right)\left(\sqrt{1-x}+\sqrt{1+x}\right)}{x\left(\sqrt{1-x}+\sqrt{1+x}\right)}=\lim\limits_{x\rightarrow0^-}\frac{-2x}{x\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)

\(=\lim\limits_{x\rightarrow0^-}\frac{-2}{\sqrt{1-x}+\sqrt{1+x}}=-1\)

Để hàm số liên tục tại x=0

\(\Leftrightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Leftrightarrow m+1=-1\Rightarrow m=-2\)

Bài 2:

Đặt \(f\left(x\right)=4x^4+2x^2-x-3\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng thuộc R

\(f\left(-1\right)=4>0\) ; \(f\left(0\right)=-3< 0\)

\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(-1;0\right)\)

\(f\left(1\right)=2>0\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(0;1\right)\)

Vậy \(f\left(x\right)\) có ít nhất 2 nghiệm trên \(\left(-1;1\right)\)

14 tháng 4 2017

\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).

NV
13 tháng 3 2020

a/ \(\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=\lim\limits_{x\rightarrow\sqrt{2}}\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=\lim\limits_{x\rightarrow\sqrt{2}}\left(x+\sqrt{2}\right)=2\sqrt{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=f\left(\sqrt{2}\right)\Rightarrow\) hàm số liên tục tại \(x=\sqrt{2}\)

b/ \(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)

\(f\left(5\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=5\)

\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow\) hàm số liên tục tại \(x=5\)

NV
5 tháng 3 2022

2.

\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(x+2a\right)=2a\)

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(x^2+x+1\right)=1\)

Hàm liên tục tại \(x=0\Leftrightarrow\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^+}f\left(x\right)\)

\(\Leftrightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)

3. Đặt \(f\left(x\right)=x^4-x-2\)

Hàm \(f\left(x\right)\) liên tục trên R nên liên tục trên \(\left(1;2\right)\)

\(f\left(1\right)=-2\) ; \(f\left(2\right)=12\Rightarrow f\left(1\right).f\left(2\right)=-24< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (1;2)

Hay pt đã cho luôn có nghiệm thuộc (1;2)