Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D 1 2
Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)
Giải:
a, ΔABD = ΔACD:
Xét ΔABM và ΔACM có:
+ AB = AC (ΔABC cân tại A)
+ AM là cạnh chung.
+ BM = CM (trung tuyến AM)
=> ΔABM = ΔACM (c - c - c)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)
Xét ΔABD và ΔACD có:
+ AB = AC (ΔABC cân tại A)
+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)
+ AD là cạnh chung.
=> ΔABD = ΔACD (c - g - c)
b, ΔBDC cân:
Ta có: ΔABD = ΔACD (câu a)
=> BD = CD (2 cạnh tương ứng)
=> ΔBDC cân tại D.
A B C D M
a) ΔABD=ΔACD
Xét ΔABM và ΔACM ta có:
AB=AC (ΔABC cân tại A)
AM chung
BM=BC (gt)
\(\Rightarrow\)ΔABM = ΔACM (c.c.c)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
Xét ΔABD và ΔACD ta có:
AB=AC (ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\) (cmt)
AM cạnh chung
\(\Rightarrow\) ΔABD = ΔACD (c.g.c)
b) ΔBDC cân
Vì ΔABD = ΔACD ( theo câu a)
\(\Rightarrow\)BD=DC (2 cạnh tương ứng)
\(\Rightarrow\)ΔBDC cân tại D (đpcm)
Sửa đề; AE là phân giác
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy ra: BE=DE
b: Xét ΔEBK và ΔEDC có
\(\widehat{BEK}=\widehat{DEC}\)
EB=ED
\(\widehat{EBK}=\widehat{EDC}\)
Do đó: ΔEBK=ΔEDC
c: ta có: AB=AD
EB=ED
DO đó:AE là đường trung trực của BD
Ta có: ΔAKC cân tại A
mà AE là đường phân giác
nên AE là đường trung trực của CK
a) Xét Δ ABM và Δ ACM,có
AB=AC (gt)
AM chung
BM=CM (gt)
=>ΔΔ ABM=ΔΔ ACM(c-c-c)
b)Ta có BM+CM=BC
Mà BC=10cm; BM=CM
=>BM+BM=BC
=>2BM=BC
=>BM=BC/2=10/2=5cm
Ta có Δ ABM=Δ ACM(cmt)
=>Góc BMA=góc CMA(2 góc t/ứng)
Mà \(\widehat{BMA}+\widehat{CMA}=180\left(kb\right)\)
=> \(\widehat{BMA}=\widehat{CMA}=90\)
AM2=AB2-BM2
AM2=132-52
AM2=144
=>\(AM=\sqrt{144}=12\)
a) Xét 2 \(\Delta ABM\) và \(\Delta ACM\), có:
AB = AC ( = 13 cm)
AM cạnh chung
BM = CM ( vì AM là đường trung tuyến )
=> tamgiac ABM = tamgiac ACM ( c.c.c )
b) Ta có: tamgiac ABM = tamgiac ACM
=> góc AMB = góc AMC ( 2 góc tương ứng)
Mà góc AMB + góc AMC = 1800 (kề bù)
=> góc AMB = 1800 : 2 = 900
Nên AM vuông góc BC hay tamgiac ABM vuông tại M
Lại có: BM = CM (vì AM là trung tuyến)
Mà BM + CM = BC
Hay: 2.BM = 10
=> BM = 10 : 2 = 5 (cm)
Áp dụng định lý Pi-ta-go vào tamgiac vuông ABM có:
AB2 = AM2 + BM2
=> AM2 = AB2 - BM2
Hay AM2 = 132 - 52
=> AM2 = 169 - 25 = 144
Vậy AM = \(\sqrt{144}=12\left(cm\right)\)
A B C M ( hình ảnh chỉ mang t/c minh họa )
B A C M K H G I
a) Xét hai tam giác MHB và MKC có:
MB = MC (gt)
Góc HMB = góc KMC (đối đỉnh)
MH = MK (gt)
Vậy: tam giác MHB = tam giác MKC (c - g - c)
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> Tam giác MAB cân tại M
=> MH là đường cao đồng thời là đường trung tuyến
hay HB = HA
=> CH là đường trung tuyến ứng với cạnh AB
Hai đường trung tuyến AM và CH cắt nhau tại G
=> G là trọng tâm của tam giác ABC
Mà BI đi qua trọng tâm G (G thuộc BI)
Do đó BI là đường trung tuyến còn lại
hay I là trung điểm của AC (đpcm).
A B C O 1 1
Giải:
Xét \(\Delta BOC\) có: \(\widehat{BOC}+\widehat{B_1}+\widehat{C_1}=180^o\)
\(\Rightarrow\widehat{B_1}+\widehat{C_1}=50^o\left(\widehat{BOC}=130^o\right)\)
\(\Rightarrow2\left(\widehat{B_1}+\widehat{C_1}\right)=100^o\)
\(\Rightarrow2.\widehat{B_1}+2.\widehat{C_1}=100^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=100^o\)
Xét \(\Delta ABC\) có: \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{BAC}=80^o\)
Vậy \(\widehat{BAC}=80^o\)
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)
\(\Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\)
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
hay a/b=5/6
Câu a và hình vẽ bạn vào link này nhé:
https://hoc24.vn/hoi-dap/question/173974.html
b) Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H có:
\(AB^2=AH^2+BH^2\)
mà \(AH=CK\) (\(\Delta BHA=\Delta AKC\) ở câu a)
\(\Rightarrow AB^2=CK^2+BH^2\)
Vậy \(BH^2+CK^2\) có giá trị không đổi.
Để mai mk lm giờ pùn ngủ quá ^ ^