K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

a, đề phải là 1/a.(a+1) = 1/a - 1/a+1 chứ bạn !

Có : 1/a.(a+1) = (a+1)-a/a.(a+1) = a+1/a.(a+1) - a/a.(a+1) = 1/a - 1/a+1

=> 1/a.(a+1) = 1/a - 1/a+1

b, Có : 2/a.(a+1).(a+2) = (a+2)-a/a.(a+1).(a+2) = a+2/a.(a+1).(a+2) - a/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)

=> 2/a.(a+1).(a+2) = 1/a.(a+1) - 1/(a+1).(a+2)

Tk mk nha

13 tháng 1 2018

a, \(VP=\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}==\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}=VT\)

b, \(VP=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}=VT\)

20 tháng 8 2020

a) \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)

b) \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{\left(a+2\right)-a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)

\(=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)

20 tháng 8 2020

a, Ta có : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{a+1-a}{a\left(a+1\right)}\)

\(VT=\frac{1}{a\left(a+1\right)}\left(đpcm\right)\)

b, Ta có : \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)

\(VT=\frac{2}{a\left(a+1\right)\left(a+2\right)}\left(đpcm\right)\)

17 tháng 6 2015

bạn tách từng câu ra. thế này k ai làm cho đâu

28 tháng 6 2018

Đúng vậy

18 tháng 10 2020

Ta có \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}=\frac{a+a^2+....+a^{2020}}{a^2+a^3+...+a^{2021}}\)

=> \(\frac{a}{a^2}=\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\)

=> \(\left(\frac{a}{a^2}\right)^{2020}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)

=> \(\frac{a}{a^2}.\frac{a}{a^2}...\frac{a}{a^2}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(2020 thừa số \(\frac{a}{a^2}\))

=> \(\frac{a}{a^2}.\frac{a^2}{a^3}...\frac{a^{2020}}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(Vì \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}\))

=> \(\frac{a}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(đpcm)

17 tháng 4 2019

Hay nhỉ 😮😐😕😕😕😑😑😦😦😦😦😒😒😒😶😶

17 tháng 4 2019

ĐÚNG KO

27 tháng 7 2021

27 tháng 7 2021

ý tui lộn đề