K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

\(=8a+40-4a^2-20a=-4a^2-12a+40\)

6 tháng 1 2020

a)\(3xy^2+6x^2y=3xy\left(y+2x\right)\)
b) Bạn xem lại đầu bài
c) \(4x^2-4y^2+4x+1=4x^2+4x+1-4y^2=\left(2x+1\right)^2-4y^2=\left(2x+1-2y\right)\left(2x+1+2y\right)\)

6 tháng 1 2020

làm hộ

a: \(Q=\left(\dfrac{a^2+4a+4-a^2+4a-4+4a^2}{\left(a-2\right)\left(a+2\right)}\right):\dfrac{a\left(a-3\right)}{5a\left(2-a\right)}\)

\(=\dfrac{4a^2+8a}{\left(a-2\right)\left(a+2\right)}\cdot\dfrac{-5\left(a-2\right)}{a-3}\)

\(=\dfrac{-20a}{a-3}\)

b: Q chia hết cho 20 thì a/a-3 là số nguyên

=>\(a-3\in\left\{1;-1;3;-3\right\}\)

=>a=4 hoặc a=6

 

16 tháng 5 2023

thank yeu

 

15 tháng 10 2017

Đặt A = (a^2 + a - 1)^2 + 4a^2 + 4a = (a^2 + a - 1)^2 + 4(a^2 + a)
Đặt a^2 + a = x
=> A = (x - 1)^2 + 4x = x^2 + 2x + 1 = (x + 1)^2 = (a^2 + a + 1)^2

1 tháng 10 2016

A = (x-10)2 - 1 luôn lớn hơn hoặc bằng -1

MinA = -1 <=> x= 10

B = (2a + 1 )2 + 1 luôn lớn hơn hoặc bằng 1 

MinB = 1 <=> a = -0,5

\(A=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{\left(2a-1\right)^2}{2a+1}\cdot\dfrac{1}{\left(2a-1\right)\left(2a+1\right)}\right)\cdot\left(\dfrac{4a\left(a+1\right)+1}{4a^2}\right)-\dfrac{1}{2a}\)

\(=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{2a-1}{\left(2a+1\right)^2}\right)\cdot\dfrac{4a^2+4a+1}{4a^2}-\dfrac{1}{2a}\)

\(=\dfrac{-\left(2a-1\right)\left(2a+1\right)}{\left(2a+1\right)^2}\cdot\dfrac{\left(2a+1\right)^2}{4a^2}-\dfrac{1}{2a}\)

\(=\dfrac{-\left(4a^2-1\right)}{4a^2}-\dfrac{2a}{4a^2}\)

\(=\dfrac{-4a^2-2a+1}{4a^2}\)

20 tháng 6 2023

1) Bằng phương pháp quy nạp, dễ dàng chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\). Do đó, để \(1^2+2^2+...+n^2⋮̸5\) thì \(n\left(n+1\right)\left(2n+1\right)⋮̸5\). Điều này có nghĩa là \(n\equiv3\left(mod5\right)\) hoặc \(n\equiv1\left(mod5\right)\). Tóm lại, để \(1^2+2^2+...+n^2⋮̸5\) thì \(n\equiv3\left(mod5\right)\) hoặc \(n\equiv1\left(mod5\right)\).

2) Ta so sánh \(a^3-7a^2+4a-14\) với \(a^3+3\). Ta thấy \(\left(a^3-7a^2+4a-14\right)-\left(a^3+3\right)\) \(=-7a^2+4a-17=D\). dễ thấy với mọi \(a\inℤ\) thì \(D< 0\) (thực ra với mọi \(a\inℝ\) thì vẫn có \(D< 0\)) nên \(a^3-7a^2+4a-14< a^3+3\), vì vậy \(a^3-7a^2+4a-14⋮̸a^3+3\). Vậy, không tồn tại \(a\inℤ\) thỏa mãn ycbt.

Mình làm 2 bài này trước nhé.

20 tháng 6 2023

P = 12 + 22 + 32 +...+n2 không chia hết cho 5

P = 1.(2-1) + 2.(3-1) + 3.(4-1)+...+n(n +1 - 1)

P = 1.2-1+ 2.3 - 2+ 3.4 - 3+...+ n(n+1) - n

P = 1.2 + 2.3 + 3.4+ ...+n(n+1) - (1+2+3+...+n)

P = n(n+1)(n+2):3 - (n+1)n:2

P = n(n+1){ \(\dfrac{n+2}{3}\) - \(\dfrac{1}{2}\)}

P = n(n+1)(\(\dfrac{2n+1}{6}\)) không chia hết cho 5 

⇒ n(n+1)(2n+1) không chia hết cho 5

⇒ n không chia hết cho 5

⇒ n = 5k + 1; n = 5k + 2; n = 5k + 3; n = 5k + 4

th1: n = 5k + 1 ⇒ n + 1 = 5k + 2 không chia hết cho 5  ; 2n + 1 = 10n + 3 không chia hết cho 5 vậy n = 5k + 1 (thỏa mãn)

th2: nếu n = 5k + 2 ⇒ n + 1 = 5k + 3 không chia hết cho 5;    2n + 1  = 10k + 5 ⋮ 5 (loại)

th3: nếu n = 5k + 3 ⇒  n + 1 = 5k +4 không chia hết cho 5;   2n + 1 = 10k + 7 không chia hết cho 5 (thỏa mãn)

th4 nếu n = 5k + 4 ⇒ n + 1 = 5k + 5 ⋮ 5 (loại)

Từ những lập luận trên ta có:

P không chia hết cho 5 khi 

\(\left[{}\begin{matrix}n=5k+1\\n=5k+3\end{matrix}\right.\) (n \(\in\) N)

 

 

 

10 tháng 4 2020

Cách làm như trên là không sai, tuy nhiên để chặt chẽ hơn bạn có thể làm như thế này:

Ta có:\(\left\{{}\begin{matrix}4a>4b\\-2>-3\end{matrix}\right.\), cộng 2 vế của bất phương trình ta được \(4a-2>4b-3\left(ĐPCM\right)\)

27 tháng 7 2020

Viết rõ đề bài ra đc không ạ

27 tháng 7 2020

đấy là phân số