Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chiều rộng=x ,chiều dài = x+6 , điều kiện x>0
Bình phương đường chéo = x2 + (x+6)2 ( áp dụng định lý pytagos)
Chu vi = 2(x+x+6)
Bình phương đường chéo gấp 5 lần chu vi nên ta có Phương Trình :
x2 + (x+6)2 = 10(x+x+6) giải PT này, ta đc x1=6 ( thỏa mãn đk) ; x2=-2 ( không thỏa mãn Đk)
Kết luận, chiều dài là 6m, chiều rộng là 12m
Câu 1: gọi số gế trong một dãy là x, số dãy gế là y ta có phương trinh :x.y=100 (1)
sau khi thay đổi số gế và số dãy ta có phương trình :(x-1)(y-2)= 100-28 <=> xy-2x-y+2 = 72 <=> 2x+y = 30 <=> y = 30 -2x (2)
thế 2 vào 1 ta có : x(30-2x)=100 <=> \(x^2-15x+50=0\Leftrightarrow\orbr{\begin{cases}x=10\Rightarrow y=10\\x=5\Rightarrow y=20\end{cases}}\)kết luận nghiệm
Câu 2:Gọi số sản phần cần hoàn thành là :x
số sản phẩn dự kiến làm trong 1 ngày là : 0,1x
Khi tăng năng xuất sản phầm ta có phương trình :
\(\left(0,1+5\right)8=x\Leftrightarrow0,8x+40=x\Leftrightarrow0,2x=40\Leftrightarrow x=200\)sản phẩm
Câu 3:gọi chiều rộng là x>0 ,chiều dài là x+6
chu vi của hcn là : 2(x+x+6)=4x+12
độ dài của đường chéo là : \(\sqrt{x^2+\left(x+6\right)^2}=\sqrt{x^2+x^2+12x+36}=\sqrt{2x^2-12x+36}\)
theo giả thiết ta có phương trình:
\(\left(\sqrt{2x^2-12x+36}\right)^2=5\left(4x+12\right)\Leftrightarrow2x^2-12x+36=20x+60\)
\(\Leftrightarrow2x^2-8x-24=0\Leftrightarrow\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)loại x= -2
vậy chiều rộng là 6, chiều dài là 12
Từ 1 thành phố bất kì ta cần n - 1 đường bay nối đến n - 1 thành phố còn lại
Vậy từ n thành phố cần \(n\left(n-1\right)\)đường bay
Mà với cách tính này thì số đường bay bị gấp lên 2 lần
Vậy số đường cần là : \(\frac{n\left(n-1\right)}{2}\)
Vậy có thể cấp phép tối đa cho cho \(\frac{n\left(n-1\right)}{2}\)hãng hàng không .
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
Gọi số dãy ghế ban đầu là x và số ghế trong mỗi dãy ban đầu là y (với \(x;y\in N\) và \(x;y>0\))
Do hội trường ban đầu có 510 chỗ ngồi nên ta có: \(xy=510\)
Số dãy ghế lúc sau: \(x+3\)
Số ghế mỗi dãy lúc sau: \(y+2\)
Do sau khi tăng thì đủ ghế cho 640 người nên: \(\left(x+3\right)\left(y+2\right)=640\)
Ta được hệ:
\(\left\{{}\begin{matrix}xy=510\\\left(x+3\right)\left(y+2\right)=640\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=510\\xy+2x+3y+6=640\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=510\\2x+3y=124\end{matrix}\right.\)
\(\Rightarrow x\left(124-2x\right)=510.3\)
\(\Rightarrow2x^2-124x+1530=0\Rightarrow\left[{}\begin{matrix}x=45\Rightarrow y=\dfrac{34}{3}\left(loại\right)\\x=17\Rightarrow y=30\end{matrix}\right.\)