K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: Tìm số dư của phép chia cho 9. CHIA9.PAS Cho một số nguyên dương N có M chữ số. Yêu cầu: Tìm số dư của phép chia số N cho 9. Dữ liệu vào: Cho trong file văn bản CHIA9.INP, có cấu trúc như sau: - Dòng 1: Ghi số nguyên dương M là số lượng chữ số của số N (1 ≤ M ≤ 100). - Dòng 2: Ghi M chữ số của số N, các chữ số được ghi liền nhau. Dữ liệu ra: Ghi ra file văn bản CHIA9.OUT, theo cấu trúc như...
Đọc tiếp

Bài 4: Tìm số dư của phép chia cho 9. CHIA9.PAS Cho một số nguyên dương N có M chữ số. Yêu cầu: Tìm số dư của phép chia số N cho 9. Dữ liệu vào: Cho trong file văn bản CHIA9.INP, có cấu trúc như sau: - Dòng 1: Ghi số nguyên dương M là số lượng chữ số của số N (1 ≤ M ≤ 100). - Dòng 2: Ghi M chữ số của số N, các chữ số được ghi liền nhau. Dữ liệu ra: Ghi ra file văn bản CHIA9.OUT, theo cấu trúc như sau: - Dòng 1: Ghi số nguyên dương Q, là số dư tìm được. Ví dụ: CHIA9.INP CHIA9.OUT 5 74283 6

Bài 5: Tìm số sát sau - SOSATSAU.PAS Cho số tự nhiên A có N chữ số. Hãy hoán vị các chữ số trong A để thu được số B thoả mãn đồng thời hai điều kiện sau: - B lớn hơn A. - B nhỏ nhất. Dữ liệu vào: Cho trong file SOSATSAU.INP có cấu trúc như sau: - Dòng 1: Ghi số N là số lượng chữ số của A (0a[i-1]. Do đoạn cuối giảm dần, điều này thực hiện bằng cách tìm từ cuối dãy lên đầu gặp chỉ số k đầu tiên thỏa mãn a[k]>a[i-1] (có thể dùng tìm kiếm nhị phân) - Đảo giá trị a[k] và a[i-1] - Lật ngược thứ tự đoạn cuối giảm dần (từ a[i] đến a[k]) trở thành tăng dần + Nếu không tìm thấy tức là toàn dãy đã sắp xếp giảm dần, đây là hoán vị cuối cùng.

Bài 2. MẬT KHẨU. Cu Tí thường xuyên tham gia thi lập trình trên mạng. Vì đạt được thành tích cao nên Tí được gửi tặng một phần mềm diệt virus. Nhà sản xuất phần mềm cung cấp cho Tí một mã số là một dãy gồm các bộ ba chữ số ngăn cách nhau bởi dấu chấm và có chiều dài không quá 255 (kể cả chữ số và dấu chấm). Để cài đặt được phần mềm, Tí phải nhập vào mật khẩu của phần mềm. Mật khẩu là một số nguyên dương M được tạo ra bằng cách tính tổng giá trị các bộ ba chữ số trong dãy mã số, các bộ ba này được đọc từ phải sang trái. - Yêu cầu: Cho biết mã số của phần mềm, hãy tìm mật khẩu của phần mềm đó. - Dữ liệu vào: Cho từ tệp văn bản có tên BL2.INPgồm một dòng chứa xâu ký tự S (độ dài xâu không quá 255 ký tự) là mã số của phần mềm. - Kết quả: Ghi ra tệp văn bản có tên BL2.OUTgồm một số nguyên là mật khẩu tìm được. MK.INP MK.OUT 123.234 257

Bài 6: Biến đổi số BIENDOI.PAS Cho một số nguyên dương M có K chữ số (0 < M; 1 ≤ K ≤ 200). Người ta thực hiện biến đổi số M bằng cách xóa đi trong M các chữ số 0 và sau đó sắp xếp các chữ số còn lại theo thứ tự không giảm của giá trị từng chữ số. Gọi số nguyên dương N là số thu được sau khi thực hiện biến đổi số M. Yêu cầu: Hãy tìm số nguyên dương N. Dữ liệu vào: Nhập vào từ tệp biendoi.inp số M Dữ liệu ra: Ghi ra tệp biendoi.out số N Ví dụ: M=3880247 N=234788

0
28 tháng 5 2017

gọi chiều rộng=x ,chiều dài = x+6 , điều kiện x>0

Bình phương đường chéo = x2 + (x+6)2 ( áp dụng định lý pytagos)

Chu vi = 2(x+x+6)

Bình phương đường chéo gấp 5 lần chu vi nên ta có Phương Trình :

 x2 + (x+6)= 10(x+x+6) giải PT này, ta đc x1=6 ( thỏa mãn đk) ; x2=-2 ( không thỏa mãn Đk) 

Kết luận, chiều dài là 6m, chiều rộng là 12m

28 tháng 5 2017

Câu 1: gọi số gế trong một dãy là x, số dãy gế là y ta có phương trinh :x.y=100 (1)

sau khi thay đổi số gế và số dãy ta có phương trình :(x-1)(y-2)= 100-28 <=> xy-2x-y+2 = 72 <=> 2x+y = 30 <=> y = 30 -2x (2)

thế 2 vào 1 ta có : x(30-2x)=100 <=> \(x^2-15x+50=0\Leftrightarrow\orbr{\begin{cases}x=10\Rightarrow y=10\\x=5\Rightarrow y=20\end{cases}}\)kết luận nghiệm

Câu 2:Gọi số sản phần cần hoàn thành là :x

số sản phẩn dự kiến làm trong 1 ngày là : 0,1x

Khi tăng năng xuất sản phầm ta có phương trình :

\(\left(0,1+5\right)8=x\Leftrightarrow0,8x+40=x\Leftrightarrow0,2x=40\Leftrightarrow x=200\)sản phẩm

Câu 3:gọi chiều rộng là x>0 ,chiều dài là x+6

chu vi của hcn là : 2(x+x+6)=4x+12

độ dài của đường chéo là : \(\sqrt{x^2+\left(x+6\right)^2}=\sqrt{x^2+x^2+12x+36}=\sqrt{2x^2-12x+36}\)

theo giả thiết ta có phương trình:

\(\left(\sqrt{2x^2-12x+36}\right)^2=5\left(4x+12\right)\Leftrightarrow2x^2-12x+36=20x+60\)

\(\Leftrightarrow2x^2-8x-24=0\Leftrightarrow\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)loại x= -2 

vậy chiều rộng là 6, chiều dài là 12

15 tháng 2 2016

đáp án là không chia hết 

k mình nha

Vấn đề P chống lại NPVới quyển từ điển trong tay, liệu bạn thấy tra nghĩa của từ “thằn lắn” dễ hơn, hay tìm một từ phổ thông để diễn tả “loài bò sát có bốn chân, da có vảy ánh kim, thường ở bờ bụi” dễ hơn? Câu trả lời hầu như chắc chắn là tra nghĩa thì dễ hơn tìm từ.Những các nhà toán học lại không chắc chắn như thế. Nhà toán học Canada Stephen Cook là người đầu...
Đọc tiếp
  1. Vấn đề P chống lại NP
    Với quyển từ điển trong tay, liệu bạn thấy tra nghĩa của từ “thằn lắn” dễ hơn, hay tìm một từ phổ thông để diễn tả “loài bò sát có bốn chân, da có vảy ánh kim, thường ở bờ bụi” dễ hơn? Câu trả lời hầu như chắc chắn là tra nghĩa thì dễ hơn tìm từ.
    Những các nhà toán học lại không chắc chắn như thế. Nhà toán học Canada Stephen Cook là người đầu tiên, vào năm 1971, đặt ra câu hỏi này một cách “toán học”. Sử dụng ngôn ngữ lôgic của tin học, ông đã định nghĩa một cách chính xác tập hợp những vấn đề mà người ta thẩm tra kết quả dễ hơn (gọi là tập hợp P), và tập hợp những vấn đề mà người ta dễ tìm ra hơn (gọi là tập hợp NP). Liệu hai tập hợp này có trùng nhau không? Các nhà lôgic học khẳng định P # NP. Như mọi người, họ tin rằng có những vấn đề rất khó tìm ra lời giải, nhưng lại dễ thẩm tra kết quả. Nó giống như việc tìm ra số chia của 13717421 là việc rất phức tạp, nhưng rất dễ kiểm tra rằng 3607 x 3808 = 13717421. Đó chính là nền tảng của phần lớn các loại mật mã: rất khó giải mã, nhưng lại dễ kiểm tra mã có đúng không. Tuy nhiên, cũng lại chưa có ai chứng minh được điều đó.
    “Nếu P=NP, mọi giả thuyết của chúng ta đến nay là sai” – Stephen Cook báo trước. “Một mặt, điều này sẽ giải quyết được rất nhiều vấn đề tin học ứng dụng trong công nghiệp; nhưng mặt khác lại sẽ phá hủy sự bảo mật của toàn bộ các giao dịch tài chính thực hiện qua Internet”. Mọi ngân hàng đều hoảng sợ trước vấn đề lôgic nhỏ bé và cơ bản này!
  2. Các bạn làm đc ko?
0

Từ 1 thành phố bất kì ta cần n - 1 đường bay nối đến n - 1 thành phố còn lại

Vậy từ n thành phố cần \(n\left(n-1\right)\)đường bay

Mà với cách tính này thì số đường bay bị gấp lên 2 lần

Vậy số đường cần là : \(\frac{n\left(n-1\right)}{2}\)

Vậy có thể cấp phép tối đa cho cho \(\frac{n\left(n-1\right)}{2}\)hãng hàng không .

21 tháng 11 2015

1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

2. 

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)

 

 

                                                                          

21 tháng 11 2015

chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu

VD: 21 không là số chính phương

81=92 là số chính phương

NV
7 tháng 5 2023

Gọi số dãy ghế ban đầu là x và số ghế trong mỗi dãy ban đầu là y (với \(x;y\in N\) và \(x;y>0\))

Do hội trường ban đầu có 510 chỗ ngồi nên ta có: \(xy=510\)

Số dãy ghế lúc sau: \(x+3\)

Số ghế mỗi dãy lúc sau: \(y+2\)

Do sau khi tăng thì đủ ghế cho 640 người nên: \(\left(x+3\right)\left(y+2\right)=640\)

Ta được hệ:

\(\left\{{}\begin{matrix}xy=510\\\left(x+3\right)\left(y+2\right)=640\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=510\\xy+2x+3y+6=640\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=510\\2x+3y=124\end{matrix}\right.\)

\(\Rightarrow x\left(124-2x\right)=510.3\)

\(\Rightarrow2x^2-124x+1530=0\Rightarrow\left[{}\begin{matrix}x=45\Rightarrow y=\dfrac{34}{3}\left(loại\right)\\x=17\Rightarrow y=30\end{matrix}\right.\)